A Nanoelectronic Strategy for Reliable Chronic Neural Recording
可靠的慢性神经记录的纳米电子策略
基本信息
- 批准号:10114717
- 负责人:
- 金额:$ 34.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAstrocytesAutopsyAwarenessBlood VesselsBlood capillariesBrainCellsChronicCicatrixClinicalDataDetectionDeteriorationDevelopmentDevicesDimensionsElectrodesElectronicsEngineeringEvolutionGoalsHistologyHourImageImplantImplanted ElectrodesIn VitroIndividualInflammationInterventionLabelLaboratoriesLeadLearningMechanicsMemoryMicrogliaMissionMonitorMotionMovementMusNeurologicNeuronsNeurophysiology - biologic functionNeurosciencesNoiseOperative Surgical ProceduresOutcomePerformancePhysiologicalPositioning AttributePublic HealthRattusResearchResolutionRodentRodent ModelSignal TransductionSiliconSliceStressStructureTechniquesTestingThickTimeTissuesUnited States National Institutes of HealthWorkbasebiomaterial compatibilitybrain machine interfacebrain tissuecellular imagingclinical applicationdesigndisorder preventionelectric impedanceflexibilityimplantationimprovedin vitro testingin vivoin vivo imagingin vivo two-photon imaginginnovationinterfacialmanmechanical propertiesmillisecondminimally invasivenanoelectronicsnervous system disorderneural circuitneural implantneuroprosthesisphysical propertypreventrelating to nervous systemresponsetemporal measurementtranslational impacttranslational neuroscience
项目摘要
The ability to reliably detect and track individual neurons with sufficient temporal resolution in time scale
commensurate with learning and memory is critical to both basic and translational neurosciences. Chronically
implanted neural electrodes constitute the only means to electrically interact with living brains at sub-
millisecond time scale and single neuron resolution, but suffer from persistent interface degradation that leads
to substantial recording condition changes in both the short and long term. There is a growing awareness that
addressing the dimension and mechanical properties of the neural probe might improve the interface. However,
neural probes that provide reliable recording for extended periods with no chronic detrimental effects pose
stringent requirement on the robustness and bio-compatibility of the device, which are yet to be developed.
The overall objective of this project is to achieve stable tissue-probe interface and reliable electrical recording
by developing, testing and optimizing nanoelectronic thread (NET) neural probes. This will be studied by
extensive in vitro characterization and in vivo in rodent models (mouse and rat) where the tissue-probe
interface and the neural probe recording conditions will be monitored and evaluated over chronical implantation
durations. Repeated in vivo imaging of the cellular and vascular evolution near the implanted probes will be
used together with postmortem histology studies and comprehensive characterization of the chronical
recording performance to assess and optimize the functionality of NET probes. The central hypothesis of the
project, on the basis of strong preliminary data from the applicant's laboratory, is that chronically reliable
electrical recording with non-degrading tissue-probe interface can be achieved by matching the neural probe
physical properties, in particular the dimensions, the surgical footprint and the mechanical flexibility, with that of
the cellular networks in living brain. The specific aims are to test this hypothesis: 1) Design and optimize NET
probes for long-term in-vivo structural stability; 2) Evaluate and optimize the long-term biocompatibility of the
NET probes; and 3) Verify and optimize long-term reliable recording and tracking of individual neurons. The
approach is innovative, in the applicants' opinion, because it represents a new and substantive departure from
the status quo by focusing on the aggressive reduction of the dimension and rigidity of the neural recording
devices into previously unattainable regimes. The long-term goal of this project is to identify key design
parameters that enable chronically stable integration between man-made devices and living brain tissue so
that these parameters can be applied to guide the design of a variety of neural implants for advancing
fundamental neuroscience and benefitting neurological condition treatments. The unprecedented chronic
reliability and stability in electrical recording expected to be achieved in this project will also lead to substantial
improvement in the brain-machine interface that can be applied to neuroprosthetics.
在时间尺度上可靠地检测和跟踪具有足够时间分辨率的单个神经元的能力
与学习和记忆相称对于基本和转化神经科学至关重要。长期
植入的神经电极构成与亚属的活脑相互作用的唯一手段
毫秒时间尺度和单个神经元分辨率,但持续的界面降解率会导致
长期和长期记录条件的实质性变化。越来越意识到
解决神经探针的维度和机械性能可能会改善界面。然而,
提供长期记录的可靠记录的神经探针,没有慢性有害效果姿势
对设备的鲁棒性和生物兼容性的严格要求,尚待开发。
该项目的总体目的是实现稳定的组织探针界面和可靠的电记录
通过开发,测试和优化纳米电源线(NET)神经探针。这将由
在啮齿动物模型(小鼠和大鼠)中,广泛的体外表征和体内在组织探针中
界面和神经探针记录条件将受到慢性植入的监测和评估
持续时间。在植入探针附近的细胞和血管进化的体内反复成像将是
与验尸组织学研究以及慢性的全面表征一起使用
记录性能以评估和优化净探针的功能。中心假设
根据申请人实验室的强大初步数据,项目是长期可靠的
通过与神经探针匹配,可以使用非降解组织探针界面进行电气记录
物理特性,尤其是尺寸,手术足迹和机械灵活性,
活大脑中的细胞网络。具体目的是检验以下假设:1)设计和优化网络
长期体内结构稳定性的探针; 2)评估和优化的长期生物相容性
净探针; 3)验证和优化单个神经元的长期可靠记录和跟踪。这
申请人认为,方法是创新的,因为它代表
通过关注神经记录的维度和刚度的积极降低来进行现状
设备进入以前无法实现的政权。该项目的长期目标是确定关键设计
可以在人造设备和活脑组织之间长期稳定整合的参数,因此
这些参数可用于指导各种神经植入物的设计
基本的神经科学和受益于神经系统疾病治疗。前所未有的慢性
预计将在该项目中实现的电气记录中的可靠性和稳定性也将导致大量
可以应用于神经假想的脑机界面的改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chong Xie其他文献
Chong Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
- 批准号:82302868
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单细胞多组学解析脐带间充质干细胞优势功能亚群重塑巨噬细胞极化治疗皮肤光老化的作用与机制
- 批准号:82302829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of endothelial cell senescence in age-related cardiomyopathy
内皮细胞衰老在年龄相关性心肌病中的作用
- 批准号:
10726050 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别:
DNA methylation signatures of Alzheimer's disease in aged astrocytes
老年星形胶质细胞中阿尔茨海默病的 DNA 甲基化特征
- 批准号:
10807864 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别:
Impact of TBI and Cognitive Decline on Alzheimer's Disease Brain-Derived Exosome Cargo
TBI 和认知能力下降对阿尔茨海默病脑源性外泌体货物的影响
- 批准号:
10662883 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
- 批准号:
10844877 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别:
Molecular impact of endolysosomal dysfunction on neuron-glia communication pathways
内溶酶体功能障碍对神经元-胶质细胞通讯途径的分子影响
- 批准号:
10538113 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别: