Genetic data partnerships: Enabling equitable access within academic/private data sharing agreements
遗传数据伙伴关系:在学术/私人数据共享协议中实现公平访问
基本信息
- 批准号:10112945
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-02-28
- 项目状态:已结题
- 来源:
- 关键词:AgreementAutomobile DrivingClinicalCommunitiesDataData AnalysesData SetDevelopmentDevelopment PlansDiagnosisEnsureEthicistsEthicsEvaluationFailureFederal GovernmentFoundationsFutureGeneticGenetic DatabasesGenetic ResearchGoalsGovernmentGrantHealth ServicesHumanIncentivesIndividualIndustryInterviewKnowledgeLawyersLegalLegal patentMeasuresMedicalMentorsMentorshipMethodsModelingParticipantPatient-Focused OutcomesPatientsPoliciesPrevalencePrivatizationQuestionnaire DesignsRegulationResearchResearch DesignResearch MethodologyResearch PersonnelResourcesSamplingScience of geneticsScientistSocial WelfareSourceSpecimenStructureSystemTestingTrainingTranslationsWorkbasecareercareer developmentclinical carecostcourtdata accessdata repositorydata resourcedata sharingdemographicsdesignethical legal social implicationexperiencegenetic testinggenomic datahealth dataimprovedinstrumentlongitudinal analysismalignant breast neoplasmmeetingsphenotypic dataprecision medicinerecruitresearch and developmentskills
项目摘要
PROJECT SUMMARY/ABSTRACT
Candidate: Kayte Spector-Bagdady, JD, MBE, is an attorney and medical ethicist focused on the governance
of secondary research use of human specimens and genetic data. Her long-term career goal is to become an
independent investigator leading the development, conduct, and translation of mixed methods ethical, legal,
and social implications research into improved genetic data-sharing governance. Research Context:
“Precision medicine” and other advances in genetic research offer opportunities to improve diagnosis and
therapy for millions of patients. They also require access to massive amounts of genetic and related health
data. The federal government is currently building a large, diverse, and public databank to enable such work,
but the largest genetic datasets are currently privately owned—and growing in size and value at a rate
outstripping public counterparts. We need to design effective genetic data governance structures to allow us to
calibrate incentivization and regulation structures to protect—but not stifle—genetic data-sharing. To do so, we
need empiric evaluation of the factors driving the genetic data partnership (GDP) market, beginning with one of
the largest consumers: academics. Research Aims: The overall goal of this research is to characterize and
evaluate factors influencing academic GDPs, compare them to current existing governance structures, and
offer a model for best practice going forward. The study's specific aims are to: 1) Characterize private-
academic GDPs by exploring what resources researchers are currently using, factors that motivate or
discourage the use of public vs. private data, and the consequences of those choices; 2) Develop and validate
an instrument to measure these factors to determine their importance in selecting a dataset, perceived
strengths/ weaknesses of private vs. public data, and content of GDP agreements; and 3) Assess gaps in
existing governance structures and factors driving the private-academic GDP market. Research Plan: Prof.
Spector will use qualitative, quantitative, and mixed methods analyses. At the conclusion of this project, she
will have generated a set of factors influencing the private-public GDP market, developed and validated an
instrument to measure these factors, assessed prevalence rates of these factors and concerns across
academic genetic researchers, performed an analysis of current gaps in private-academic GDP governance,
and developed a set of best practice proposals. Career Development Plan: Prof. Spector will develop
expertise in genetic science, questionnaire design and sampling, and mixed methods. Her training will be
supported by experienced and interdisciplinary mentors; advanced coursework; and participation in research
and career development meetings and seminars within a robust community of scientist, clinicians, and health
service researchers. This project will enable Prof. Spector to become a thought leader in building an equitable
genetic data-sharing governance system to improve both research and clinical care for future patients.
项目概要/摘要
候选人:Kayte Spector-Bagdady,法学博士,MBE,是一位专注于治理的律师和医学伦理学家
她的长期职业目标是成为一名利用人类标本和基因数据进行二次研究的人。
独立调查员领导混合方法的开发、实施和翻译,符合道德、法律、
和社会研究对改善遗传数据共享治理的影响。
“精准医学”和基因研究的其他进展为改善诊断和治疗提供了机会。
他们还需要获得大量的遗传和相关健康信息。
联邦政府目前正在建立一个大型、多样化的公共数据库来支持此类工作,
但最大的遗传数据集目前为私人所有,并且其规模和价值正在以惊人的速度增长
我们需要设计有效的基因数据治理结构,使我们能够超越公共捐助者。
调整激励和监管结构以保护(而不是扼杀)基因数据共享。
需要对推动基因数据合作伙伴关系 (GDP) 市场的因素进行实证评估,首先从以下之一开始:
最大的消费者:学者 研究目的:本研究的总体目标是表征和分析。
评估影响学术 GDP 的因素,将其与当前现有的治理结构进行比较,以及
提供未来最佳实践的模型 该研究的具体目标是: 1) 描述私人的特征。
通过探索研究人员目前正在使用哪些资源、激励或促进学术 GDP 的因素
阻止使用公共数据和私人数据,以及这些选择的后果 2) 开发和验证;
衡量这些因素以确定它们在选择数据集时的重要性的工具,感知
私人数据与公共数据的优势/劣势以及 GDP 协议的内容;以及 3) 评估
现有的治理结构和驱动私人学术 GDP 市场的因素:Prof.
在该项目结束时,斯佩克特将使用定性、定量和混合方法进行分析。
将产生一系列影响私人-公共 GDP 市场的因素,开发并验证
衡量这些因素的工具,评估这些因素的流行率以及各个方面的担忧
学术遗传研究人员对当前私人学术 GDP 治理方面的差距进行了分析,
并制定了一套最佳实践建议:Spector 教授将制定。
她将接受遗传科学、问卷设计和抽样以及混合方法方面的专业知识。
由经验丰富的跨学科导师支持并参与研究;
以及在由科学家、新人和健康组成的强大社区内举办的职业发展会议和研讨会
该项目将使斯佩克特教授成为建立公平的思想领袖。
遗传数据共享治理系统,以改善未来患者的研究和临床护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kayte Kelleher Spector-Bagdady其他文献
Kayte Kelleher Spector-Bagdady的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kayte Kelleher Spector-Bagdady', 18)}}的其他基金
Hospitals Sharing Patient Data and Biospecimens with Commercial Entities: Evidence-Based Translation to Improved Practice
医院与商业实体共享患者数据和生物样本:基于证据的翻译以改进实践
- 批准号:
10501505 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Hospitals Sharing Patient Data and Biospecimens with Commercial Entities: Evidence-Based Translation to Improved Practice
医院与商业实体共享患者数据和生物样本:基于证据的翻译以改进实践
- 批准号:
10667651 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Genetic data partnerships: Enabling equitable access within academic/private data sharing agreements
遗传数据伙伴关系:在学术/私人数据共享协议中实现公平访问
- 批准号:
9916795 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Genetic data partnerships: Enabling equitable access within academic/private data sharing agreements
遗传数据伙伴关系:在学术/私人数据共享协议中实现公平访问
- 批准号:
10555193 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Genetic data partnerships: Enabling equitable access within academic/private data sharing agreements
遗传数据伙伴关系:在学术/私人数据共享协议中实现公平访问
- 批准号:
10341151 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Advancing On-Slide and Optical Biopsy Tools to Detect High-Risk Oral Premalignancy
先进的载玻片和光学活检工具来检测高风险口腔癌前病变
- 批准号:
10768888 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
UNderstanding the Delivery of Low-Value CAre To CHildren and the Barriers to De-Implementation (UN-LATCH)
了解向儿童提供低价值护理以及取消实施的障碍 (UN-LATCH)
- 批准号:
10649811 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Activation of Neuronal Degradative Pathways to Ameliorate Prion Disease
激活神经元降解途径以改善朊病毒病
- 批准号:
10855708 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Translating in vivo drug screens to Alzheimer's patients with a pharmaco-epidemiological approach
利用药物流行病学方法将体内药物筛选应用于阿尔茨海默病患者
- 批准号:
10727993 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Evaluation of a therapeutic vaccination strategy with motif neoepitope peptide-pulsed autologous dendritic cells for non-small cell lung cancer patients harboring a charged HLA-B binding pocket.
使用基序新表位肽脉冲的自体树突状细胞对携带带电 HLA-B 结合袋的非小细胞肺癌患者的治疗性疫苗接种策略进行评估。
- 批准号:
10721983 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别: