Engineering Smart Protein Coronas to Advance Theraputic mRNA Delivery
设计智能蛋白冠以推进治疗性 mRNA 传递
基本信息
- 批准号:10056170
- 负责人:
- 金额:$ 6.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:Apolipoprotein EAsthmaBindingBiodistributionBlood CirculationBrainC57BL/6 MouseCarrier ProteinsCell Surface ReceptorsCellsChemistryClinicalCoronary ArteriosclerosisCytoplasmDataDevelopmentDiabetes MellitusDiseaseDrug CarriersDrug KineticsDrug TargetingElementsEngineeringFDA approvedFaceFlow CytometryFutureGenesGenetic DiseasesGenetic TranslationHeartHepatocyteImage CytometryImmuneImmunotherapyInjectionsKnowledgeLibrariesLibrary MaterialsLiverLiver diseasesLuciferasesLungMass Spectrum AnalysisMeasuresMediatingMessenger RNAMolecularMultiple SclerosisMusOrganPancreasPharmaceutical PreparationsProductionPropertyProtein EngineeringProteinsProteomicsRNA deliveryReceptor CellResearchResearch PersonnelReticuloendothelial SystemScientific Advances and AccomplishmentsSerumSerum ProteinsSmall Interfering RNASpleenTherapeuticTimeTissuesTranslatingWorkcellular targetingclinical translationdesignefficacy studyenzyme replacement therapygene therapyimplantable deviceimprovedin vivoin vivo imaging systeminnovationinsightintravenous injectionlipid nanoparticlelipid transportmRNA deliverymRNA taggingnanonanocarriernanoparticlenanoparticle deliverynanoparticle drugnucleic acid deliveryreceptorrecruitsmall moleculesuccesstargeted agenttoolvaccine development
项目摘要
While gene therapy with mRNA offers tremendous potential to transform the management of genetic
diseases, delivering mRNA outside the reticuloendothelial system (e.g. liver and spleen) remains challenging.
Without carriers that can reach organs such as the lungs, heart, brain, or pancreas, the potential of mRNA to
treat diseases of those organs, such as asthma, coronary artery disease, multiple sclerosis, and diabetes, will
remain untapped. This research will establish the protein corona as a new lipid nanoparticle design element that
can be engineered to achieve mRNA delivery outside the reticuloendothelial system. Upon injection into the
body, lipid nanoparticles are immediately coated in local proteins, forming a protein corona that interfaces with
cells and tissues. The composition of that natural corona has been shown to strongly influence nanoparticle fate
in vivo. This work will develop “smart” protein coronas by pre-coating mRNA lipid nanoparticles with proteins that
localize to organs outside the reticuloendothelial system prior to administration.
In Aim 1, a small library of naturally-occurring proteins will be evaluated for their ability to direct mRNA
delivery to non-reticuloendothelial organs, including the lungs, heart, brain, and pancreas, in C57BL/6 mice.
Imaging and flow cytometry will be used to identify organ and cellular targets of smart corona-coated mRNA lipid
nanoparticles. Aim 2 will elucidate the mechanisms by which smart corona-coated lipid nanoparticles enable
differential organ targeting. Smart coronas may enable differential targeting by altering circulation time, by
recruiting additional serum proteins that serve as active targeting agents, or by binding specific cell surface
receptors via the smart corona itself or via additionally adsorbed proteins. Proteomic analysis will determine what
proteins adsorb coated-lipid nanoparticles upon intravenous injection, and cell receptor blocking studies will
identify cellular targets that facilitate effective mRNA delivery.
This work is innovative in that it will establish the protein corona as a previously-unappreciated
nanoparticle design element that can be engineered to enable mRNA delivery to challenging organ targets. While
efficacious smart coronas will provide researchers with new tools to advance drug targeting, mechanistic insights
will inform future smart corona design. This research is significant because it will contribute a paradigm-shifting
targeting strategy to accelerate the clinical translation of mRNA therapeutics for extrahepatocellular diseases.
Further, the results obtained by this research will advance the delivery of nucleic acids, small molecules, and
proteins from diverse drug carriers, such nanoparticles, drug conjugates, and implantable devices. Ultimately,
the knowledge generated by this work has the potential to transform and accelerate the development of targeted
drug carriers.
虽然用mRNA的基因疗法具有巨大的潜力来改变通用的管理
疾病,在网状内皮系统(例如肝脏和脾脏)之外传递mRNA仍然受到挑战。
没有可以到达肺,心脏,大脑或胰腺等器官的载体,mRNA的潜力
治疗这些器官的疾病,例如哮喘,冠状动脉疾病,多发性硬化症和糖尿病
保持未开发。这项研究将确定蛋白质电晕作为一种新的脂质纳米颗粒设计元素
可以设计以在网状内皮系统之外实现mRNA递送。注入
身体,脂质纳米颗粒立即涂在局部蛋白质中,形成与链接的蛋白质电晕
细胞和组织。该天然电晕的组成已显示出强烈影响纳米颗粒的命运
体内。这项工作将通过用蛋白质预涂mRNA脂质纳米颗粒来发展“智能”蛋白冠
在给药之前,请定位在网状内皮系统之外的器官。
在AIM 1中,将评估一个天然蛋白质的小库,以指导mRNA的能力
在C57BL/6小鼠中递送至非肉毒节内皮器官,包括肺,心脏,大脑和胰腺。
成像和流式细胞仪将用于识别智能电晕涂层mRNA脂质的器官和细胞靶
纳米颗粒。 AIM 2将阐明智能电晕涂层脂质纳米颗粒启用的机制
差异器官靶向。智能冠状运动可以通过改变循环时间来实现差分定位
募集用作活性靶向剂或通过结合特定细胞表面的其他血清蛋白
通过智能电晕本身或通过吸附蛋白的受体。蛋白质组学分析将确定什么
蛋白质在静脉注射后吸附涂层的脂质纳米颗粒,细胞受体阻断研究将
确定促进有效mRNA递送的细胞靶标。
这项工作具有创新性,因为它将建立蛋白质电晕作为先前未接受的
纳米颗粒设计元件可以设计以使mRNA递送以挑战器官靶标。尽管
Easy Smart Coronas将为研究人员提供新的工具,以推动药物靶向,机械见解
将告知未来的智能电晕设计。这项研究很重要,因为它将贡献范式转移
靶向策略,以加速mRNA疗法的ePARHEPATOCOLULURALURALIC疾病。
此外,这项研究获得的结果将推动核酸,小分子和
来自潜水员药物携带者,此类纳米颗粒,药物缀合物和可植入装置的蛋白质。最终,
这项工作产生的知识有可能改变和加速目标的发展
毒品载体。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing In Vivo.
- DOI:10.1021/acs.nanolett.0c00596
- 发表时间:2020-07-08
- 期刊:
- 影响因子:10.8
- 作者:Hajj KA;Melamed JR;Chaudhary N;Lamson NG;Ball RL;Yerneni SS;Whitehead KA
- 通讯作者:Whitehead KA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jilian R Melamed其他文献
Jilian R Melamed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jilian R Melamed', 18)}}的其他基金
Engineering Smart Protein Coronas to Advance Theraputic mRNA Delivery
设计智能蛋白冠以推进治疗性 mRNA 传递
- 批准号:
9911201 - 财政年份:2019
- 资助金额:
$ 6.64万 - 项目类别:
相似国自然基金
微肽TREMP结合PYCR1调控上皮细胞脯氨酸代谢和糖酵解介导哮喘气道重塑的机制研究
- 批准号:82300033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Transgelin-2与Ezrin蛋白结合介导针刺抗哮喘舒张气道平滑肌效应机制研究
- 批准号:82274646
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
Transgelin-2与Ezrin蛋白结合介导针刺抗哮喘舒张气道平滑肌效应机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
钙结合蛋白S100A4通过TLR-4信号轴调控过敏性哮喘肥大细胞与嗜酸性粒细胞相互作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
钙结合蛋白S100A4通过TLR-4信号轴调控过敏性哮喘肥大细胞与嗜酸性粒细胞相互作用及机制研究
- 批准号:82201968
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
KLF4-Dependent Regulation of SMC Differentiation and Phenotypic Switching
SMC 分化和表型转换的 KLF4 依赖性调节
- 批准号:
8012288 - 财政年份:2010
- 资助金额:
$ 6.64万 - 项目类别:
KLF4-Dependent Regulation of SMC Differentiation and Phenotypic Switching
SMC 分化和表型转换的 KLF4 依赖性调节
- 批准号:
7768056 - 财政年份:2010
- 资助金额:
$ 6.64万 - 项目类别:
KLF4-Dependent Regulation of SMC Differentiation and Phenotypic Switching
SMC 分化和表型转换的 KLF4 依赖性调节
- 批准号:
8197627 - 财政年份:2010
- 资助金额:
$ 6.64万 - 项目类别:
Siglec-targeted nanoparticles for lung and cardiovascular disease
Siglec 靶向纳米粒子治疗肺和心血管疾病
- 批准号:
8184129 - 财政年份:
- 资助金额:
$ 6.64万 - 项目类别:
Characterizing the Role of Apolipoprotein Receptors in Asthma Pathogenesis
表征载脂蛋白受体在哮喘发病机制中的作用
- 批准号:
8939836 - 财政年份:
- 资助金额:
$ 6.64万 - 项目类别: