Intraoperative functional mapping using infrared thermography
使用红外热成像技术进行术中功能定位
基本信息
- 批准号:10048125
- 负责人:
- 金额:$ 4.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AgreementAlgorithmsAnimalsAreaBehavior monitoringBehavioralBloodBlood VesselsBlood flowBrainBrain MappingBrain regionCerebral cortexCognitiveCollectionComplexComputersContralateralCraniotomyDataData CollectionDevelopmentDevicesElectric StimulationEpilepsyExcisionFutureGliomaGoalsGoldHandHumanImageImageryIndividualIntractable EpilepsyLanguageLeadMapsMeasuresMetabolismMethodsModelingMonitorMotionMotorMotor CortexNetwork-basedNeurologic DeficitNeurosciences ResearchOperating RoomsOperative Surgical ProceduresOutcomePatientsPatternPerformancePhasePhysiologicalPostoperative PeriodPredictive Value of TestsProceduresPropertyProtocols documentationResearchResolutionRiskRodentSafetySeizuresSensitivity and SpecificitySensoryShapesSignal TransductionSpatial DistributionSpeedStimulusSurfaceSurgeonTask PerformancesTechniquesTemperatureTestingThermographyTimeVibrissaeVisionWorkawakebarrel cortexbasecohortcomputerized data processingdesignimaging approachimprovedindependent component analysisinterestlaptopmalformationneurosurgeryneurovascularneurovascular couplingpreservationrelating to nervous systemresponsespatiotemporaltemporal measurementtooltumorvirtual reality
项目摘要
PROJECT SUMMARY
Functional activation of the cerebral cortex creates a robust increase in local temperature by increasing blood
flow and metabolism. Changes in surface brain temperature while an awake patient performs a motor, sensory,
or language task can be used to infer spatial patterns of activity. Awake neurosurgery is used in the
management of drug-resistant epilepsy, glioma, and neurovascular malformation, in order to localize seizure
and/or physiologic activity. Protection of key functional areas is imperative to avoiding postoperative neurologic
deficits. Currently, direct electrical stimulation (DES) is the most commonly used method of intraoperative
surgical mapping, which identifies functionally critical brain regions so they are not resected. However, DES is
low spatial resolution (~1 cm), may provoke seizures, and can only test one area at a time. This project
investigates a new method of intraoperative functional mapping based on infrared thermography, which is high
resolution (~100 micron) and simultaneously monitors the all exposed brain regions without risk for seizures.
The device will be tested on the rodent whisker barrel cortex following awake craniotomy. Subsequently glioma
patients will be studied, as tumors have relatively static impact on brain temperature compared to epileptogenic
foci and vascular malformations. Preliminary data in a motor mapping case shows strong thermal activation of
contralateral motor cortex, and strong agreement with DES. Aim 1 will establish the thermal signature of
cortical activation during awake craniotomy. We will optimize the infrared recording procedure within the
surgical workflow, as to maximize signal collection and quality while minimizing treatment interference. A
mobile tripod will stabilize the infrared camera, which is connected to a laptop computer. The computer will
monitor and collect behavioral data via adjunct surgical devices. Patient tasks currently used in DES will be
adapted for thermographic recording. Aim 2 will leverage the high temporal resolution of infrared thermography
for mapping brain networks. Independent components analysis will decompose the thermal activity into
discrete, independent patterns which correspond to brain networks. The connectivity patterns of these regions
may be analyzed to extract phase information. Features of the network activation signal will then be tested for
predictive value of DES outcomes. If successful, this project will create a new method for intraoperative
functional mapping during awake neurosurgery. Future work will integrate preoperative functional mapping
information into the thermal mapping procedure. Ultimately, we hope to improve the precision of intraoperative
brain mapping, in order to increase the safety and efficacy of surgery for patients with drug-resistant epilepsy,
glioma, and neurovascular malformations.
项目摘要
大脑皮质的功能激活通过增加血液而增加了局部温度
流动和新陈代谢。表面大脑温度的变化,而清醒患者执行电动机,感觉,
或语言任务可用于推断活动的空间模式。清醒神经外科用于
抗药性癫痫,神经胶质瘤和神经血管畸形的治疗,以定位癫痫发作
和/或生理活动。保护关键功能区域对于避免术后神经系统至关重要
缺陷。当前,直接电刺激(DES)是术中最常用的方法
手术映射,标识了功能上关键的大脑区域,因此未切除它们。但是,des是
低空间分辨率(〜1厘米)可能会引起癫痫发作,并且一次只能测试一个区域。这个项目
研究一种基于红外热成像的新方法的术中功能映射方法,该方法很高
分辨率(〜100微米)并同时监测所有暴露的大脑区域,而没有癫痫发作的风险。
醒颅切开后,该设备将在啮齿动Whisker枪管皮层上进行测试。随后进行神经胶质瘤
将研究患者,因为与癫痫发作相比,肿瘤对脑温有相对静态的影响
焦点和血管畸形。电机映射案例中的初步数据显示出强烈的热激活
对侧运动皮层和与DES的强烈一致。 AIM 1将建立热签名
清醒颅骨切开术期间的皮质激活。我们将优化在此内的红外记录过程
手术工作流程,以最大程度地收集信号和质量,同时最大程度地减少治疗干扰。一个
移动三脚架将稳定连接到笔记本电脑的红外摄像头。计算机会
通过辅助手术设备监视和收集行为数据。目前在DES中使用的患者任务将是
适用于热量记录。 AIM 2将利用红外热力计的高时间分辨率
用于映射大脑网络。独立的组件分析将将热活动分解为
离散的独立模式与大脑网络相对应。这些地区的连通性模式
可以分析以提取相位信息。然后将测试网络激活信号的功能
DES结果的预测价值。如果成功,该项目将为术中创建一种新方法
醒着神经外科手术期间的功能映射。未来的工作将整合术前功能映射
信息到热映射过程中。最终,我们希望提高术中的精度
为了提高耐药性癫痫患者手术的安全性和功效,以提高脑图
神经胶质瘤和神经血管畸形。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Iorga其他文献
Michael Iorga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Iorga', 18)}}的其他基金
Intraoperative functional mapping using infrared thermography
使用红外热成像技术进行术中功能定位
- 批准号:
10334402 - 财政年份:2020
- 资助金额:
$ 4.6万 - 项目类别:
Intraoperative functional mapping using infrared thermography
使用红外热成像技术进行术中功能定位
- 批准号:
9910899 - 财政年份:2020
- 资助金额:
$ 4.6万 - 项目类别:
相似国自然基金
加速器磁铁励磁电源扰动物理机制和观测抑制算法的研究
- 批准号:12305170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动物中一类新的长前体miRNA的发现、预测算法设计及其功能初探
- 批准号:32270602
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
动物中一类新的长前体miRNA的发现、预测算法设计及其功能初探
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
面向移动物联网的高效数据查询机制与算法研究
- 批准号:62072402
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
考虑充电站选址和容量限制的电动物流车辆路径问题研究
- 批准号:71901177
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Non-invasive measurements of central blood pressures by RF sensors
通过射频传感器无创测量中心血压
- 批准号:
10649077 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Overcoming the Barriers to Effective Transcranial Temporal Interference Stimulation in Humans
克服人类有效经颅颞叶干扰刺激的障碍
- 批准号:
10719222 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Characterizing Motor Unit Mechanics and Muscle Contractile Properties In Vivo
表征体内运动单位力学和肌肉收缩特性
- 批准号:
10527926 - 财政年份:2022
- 资助金额:
$ 4.6万 - 项目类别:
Characterizing Motor Unit Mechanics and Muscle Contractile Properties In Vivo
表征体内运动单位力学和肌肉收缩特性
- 批准号:
10704186 - 财政年份:2022
- 资助金额:
$ 4.6万 - 项目类别:
A Mobile Game for Domain Adaptation and Deep Learning in Autism Healthcare
用于自闭症医疗领域适应和深度学习的手机游戏
- 批准号:
10596139 - 财政年份:2021
- 资助金额:
$ 4.6万 - 项目类别: