Integrating epidemiologic and environmental approaches to understand and predict Coccidioides exposure and coccidioidomycosis emergence
整合流行病学和环境方法来了解和预测球孢子菌暴露和球孢子菌病的出现
基本信息
- 批准号:10065493
- 负责人:
- 金额:$ 83.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-09 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAirAreaCaliforniaCessation of lifeChargeChronicClimateClimatologyCoccidioidesCoccidioides immitisCoccidioides posadasiiCoccidioidomycosisCrossover DesignDataData CollectionDevelopmentDiseaseDisease OutbreaksDoseDroughtsDustEconomic BurdenEconomicsElderlyEnvironmentEnvironmental Risk FactorEnvironmental WindEpidemicEpidemiologyEventExposure toFutureGoalsHeterogeneityHigh temperature of physical objectHospitalizationHumanIncidenceIndividualInfectionInfection preventionInfluenzaInhalationKnowledgeLaboratoriesLeadLung infectionsMeasuresMeningitisMeteorologyMethodsModelingMonitorPathogen detectionPatternPerformancePeriodicityPopulationPopulation AnalysisPublic HealthRainRecordsReproduction sporesResearchResolutionRetrospective cohortRiskRisk FactorsSamplingSocial ConditionsSoilSourceSubgroupSymptomsTestingTimeTimeLineVariantVulnerable Populationsburden of illnessdensitydesignenvironmental interventionexperiencefungushigh riskinfection rateinfection risknovelpathogenpathogen exposurepredictive modelingprospectiveremote sensingresponserisk predictionsociodemographicsspatiotemporalstatistical and machine learningtemporal measurementtransmission process
项目摘要
Project Summary
Coccidioidomycosis is an infection caused by inhalation of spores from the soil-dwelling fungi Coccidioides
immitis or C. posadasii, and can lead to chronic lung infection, meningitis, or death. Southwestern states are
currently experiencing among the highest incidence rates of coccidioidomycosis ever recorded. The disease
has levied a substantial human and economic burden throughout the southwest, totaling an estimated $2.2
billion in charges in California alone for coccidioidomycosis-associated hospitalizations from 2000-2011.
Critical gaps in understanding have hindered the public health response, including how dust, pathogen, and
individual risk factors interact to determine disease incidence, as well as how environmental factors influence
the distribution of the pathogen and dust. To address these gaps, this project investigates the impacts of dust
exposure, environmental variability, and sociodemographic change on Coccidioides spp. proliferation,
dispersion, and coccidioidomycosis infection rates in California. The research focuses on three main aims: 1)
investigate the influence of climate variation and dust exposure on the spatiotemporal distribution of cocci
incidence using >65,000 geolocated surveillance records from 2000 to 2018 and a case-crossover design; 2)
identify environmental sources of C. immitis at high spatial and temporal resolution in disturbed and
undisturbed soil, and determine how wind, rainfall, soil disturbance and other factors influence spore dispersion
through longitudinal sampling of C. immitis in air and soil; and 3) predict changes in pathogen density over
space and time and estimate the exposure-response relationship between pathogen density and risk of
infection using a case-crossover approach with prospective surveillance for incident cases. In pursuit of these
aims, the research will combine georeferenced coccidioidomycosis case data across California since 2000 at
an unprecedented spatial resolution with fine-scale dust concentration estimates and environmental data from
a combination of remote sensing, modeling and ground monitors. We will use novel field and laboratory
methods to conduct longitudinal sampling of C. immitis in air and soil, determining how microenvironmental
conditions and cyclical patterns of rainfall and drought determine pathogen source dynamics, and identifying
conditions that support pathogen dispersion through the air. Through these activities, we will identify the
specific dust conditions that pose the greatest risk for infection, estimate pathogen exposure and the dose-
response relationship, and evaluate heterogeneity in this relationship across risk groups and regions. The
results will elucidate drivers of the current epidemic, enhance understanding of the distribution and dispersion
of Coccidioides spp. in the environment, and identify high risk regions and subpopulations. The knowledge
gained will support decision-makers in targeting, designing and implementing protective measures for
vulnerable populations.
项目概要
球孢子菌病是一种由吸入土壤真菌球孢子菌孢子引起的感染
immitis 或 C. posadasii,并可导致慢性肺部感染、脑膜炎或死亡。西南部各州是
目前球孢子菌病的发病率是有记录以来最高的。疾病
给整个西南地区带来了巨大的人力和经济负担,估计总额为 2.2 美元
2000 年至 2011 年,仅加利福尼亚州因球孢子菌病相关住院费用就高达 10 亿美元。
认识上的重大差距阻碍了公共卫生应对措施,包括灰尘、病原体和
个体风险因素相互作用决定疾病的发病率,以及环境因素如何影响
病原体和粉尘的分布。为了解决这些差距,该项目调查了灰尘的影响
球孢子菌的暴露、环境变化和社会人口变化。增殖,
加利福尼亚州的分散情况和球孢子菌感染率。该研究集中于三个主要目标:1)
研究气候变化和灰尘暴露对球菌时空分布的影响
使用 2000 年至 2018 年超过 65,000 个地理定位监测记录和病例交叉设计来统计发生率; 2)
在受干扰和环境中以高空间和时间分辨率识别 C. immitis 的环境来源
原状土壤,并确定风、降雨、土壤扰动和其他因素如何影响孢子传播
通过对空气和土壤中的 C. immitis 进行纵向采样; 3)预测病原体密度的变化
空间和时间并估计病原体密度和风险之间的暴露-反应关系
使用病例交叉方法对事件病例进行前瞻性监测来感染。为了追求这些
为了实现这一目标,该研究将结合 2000 年以来加州各地的地理参考球孢子菌病病例数据,地址:
前所未有的空间分辨率,包括精细粉尘浓度估计和环境数据
遥感、建模和地面监测的结合。我们将使用新的领域和实验室
对空气和土壤中的 C. immitis 进行纵向采样的方法,确定微环境如何
降雨和干旱的条件和周期性模式决定病原体源动态,并识别
支持病原体通过空气传播的条件。通过这些活动,我们将确定
造成感染风险最大的特定粉尘条件,估计病原体暴露和剂量
响应关系,并评估不同风险群体和地区之间这种关系的异质性。这
结果将阐明当前流行病的驱动因素,加深对分布和分散的了解
球孢子菌属 (Coccidioides spp.)环境中的风险,并确定高风险区域和亚人群。知识点
所获得的成果将支持决策者针对、设计和实施保护措施
弱势群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin V Remais其他文献
Justin V Remais的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin V Remais', 18)}}的其他基金
Integrating epidemiologic and environmental approaches to understand and predict Coccidioides exposure and coccidioidomycosis emergence
整合流行病学和环境方法来了解和预测球孢子菌暴露和球孢子菌病的出现
- 批准号:
10894510 - 财政年份:2019
- 资助金额:
$ 83.82万 - 项目类别:
Integrating epidemiologic and environmental approaches to understand and predict Coccidioides exposure and coccidioidomycosis emergence
整合流行病学和环境方法来了解和预测球孢子菌暴露和球孢子菌病的出现
- 批准号:
10582097 - 财政年份:2019
- 资助金额:
$ 83.82万 - 项目类别:
Integrating epidemiologic and environmental approaches to understand and predict Coccidioides exposure and coccidioidomycosis emergence
整合流行病学和环境方法来了解和预测球孢子菌暴露和球孢子菌病的出现
- 批准号:
10307540 - 财政年份:2019
- 资助金额:
$ 83.82万 - 项目类别:
Integrating epidemiologic and environmental approaches to understand and predict Coccidioides exposure and coccidioidomycosis emergence
整合流行病学和环境方法来了解和预测球孢子菌暴露和球孢子菌病的出现
- 批准号:
10532733 - 财政年份:2019
- 资助金额:
$ 83.82万 - 项目类别:
Integrating epidemiologic and environmental approaches to understand and predict Coccidioides exposure and coccidioidomycosis emergence
整合流行病学和环境方法来了解和预测球孢子菌暴露和球孢子菌病的出现
- 批准号:
10411618 - 财政年份:2019
- 资助金额:
$ 83.82万 - 项目类别:
Integrating Epidemiologic and Environmental Approaches to Understand and Predict Coccidioides Exposure and Coccidioidomycosis Emergence
整合流行病学和环境方法来了解和预测球孢子菌暴露和球孢子菌病的出现
- 批准号:
10116673 - 财政年份:2019
- 资助金额:
$ 83.82万 - 项目类别:
Integrating epidemiologic and environmental approaches to understand and predict Coccidioides exposure and coccidioidomycosis emergence
整合流行病学和环境方法来了解和预测球孢子菌暴露和球孢子菌病的出现
- 批准号:
10728903 - 财政年份:2019
- 资助金额:
$ 83.82万 - 项目类别:
Models for improving surveillance of environmentally-mediated infectious diseases
改善环境介导的传染病监测的模型
- 批准号:
8209154 - 财政年份:2011
- 资助金额:
$ 83.82万 - 项目类别:
Models for improving surveillance of environmentally-mediated infectious diseases
改善环境介导的传染病监测的模型
- 批准号:
8415962 - 财政年份:2011
- 资助金额:
$ 83.82万 - 项目类别:
Models for improving surveillance of environmentally-mediated infectious diseases
改善环境介导的传染病监测的模型
- 批准号:
8604361 - 财政年份:2011
- 资助金额:
$ 83.82万 - 项目类别:
相似国自然基金
面向空气质量优化的城市社会-生态格局调控和周边区域空气质量协同管控的权衡机制研究
- 批准号:42371106
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
空气污染与气候对中国主要作物产量与营养的区域影响
- 批准号:42211530081
- 批准年份:2022
- 资助金额:9.9 万元
- 项目类别:国际(地区)合作与交流项目
基于大数据的区域空气质量达标管理的精准治污最优策略研究
- 批准号:72174060
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:面上项目
污雪反照率回馈效应对区域气候和空气质量影响的数值模拟研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于区域差异化价格机制的火电部门气候变化与空气污染协同治理
- 批准号:72004216
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 83.82万 - 项目类别:
Impact of benzene-induced MIA on fetal T cell development
苯诱导的 MIA 对胎儿 T 细胞发育的影响
- 批准号:
10605881 - 财政年份:2023
- 资助金额:
$ 83.82万 - 项目类别:
A Low-Cost Wearable Connected Health Device for Monitoring Environmental Pollution Triggers of Asthma in Communities with Health Disparities
一种低成本可穿戴互联健康设备,用于监测健康差异社区中哮喘的环境污染诱因
- 批准号:
10601615 - 财政年份:2023
- 资助金额:
$ 83.82万 - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 83.82万 - 项目类别: