Prostate Cancer Radio-Pathomics for Differentiating Clinically Significant Disease
前列腺癌放射病理学用于区分有临床意义的疾病
基本信息
- 批准号:10066138
- 负责人:
- 金额:$ 63.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsArchitectureBiological MarkersClinicClinicalComputational algorithmComputer softwareConsensusData SetDependenceDiagnosisDiagnosticDifferential DiagnosisDiseaseEarly DiagnosisExhibitsExternal Beam Radiation TherapyFunding OpportunitiesGlandGleason Grade for Prostate CancerGoalsHistologicHistologyImageImaging DeviceIndividualIndolentLibrariesLocationMRI ScansMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateMapsMeasuresMethodsMicroscopicModelingOperative Surgical ProceduresPathologyPatientsPatternPerformancePhysiciansPopulationPrognosisProstateProstate Cancer therapyProstatic NeoplasmsProtocols documentationRadiationRadiation therapyRadical ProstatectomyRadioRadiology SpecialtyRecurrenceRiskSamplingSensitivity and SpecificitySeverity of illnessStress TestsSystemTechniquesTechnologyTestingTherapeuticTissue SampleTrainingTranslatingValidationVendorbasecancer riskclinical applicationclinical decision-makingclinical imagingclinically significantdisorder riskevidence baseexperimental studyhigh riskimage processingimaging biomarkerimaging systemimprovedindividualized medicinemennon-invasive imagingovertreatmentpersonalized cancer therapypredictive modelingprostate cancer riskquantitative imagingresilienceresponsescreeningserial imagingtooltreatment strategytumor
项目摘要
Abstract
Prostate cancer is the most commonly diagnosed non-cutaneous cancer, affecting one in seven men. Even
when treated with a radical prostatectomy, historically about 20% of patients exhibit tumor recurrence. This
proposal will focus on the integration of two separate, complimentary datasets to better differentiate high risk
patients: multi-parametric magnetic resonance imaging (MP-MRI) and whole-mount post-surgical prostate
pathology samples. We will develop radio-pathomic algorithms capable of predicting underlying pathomic
features from non-invasive imaging in order to differentiate prostate cancer with high metastatic potential. Our
overarching hypothesis is that microscopic, heterogeneous pathomic features of prostate cancer are reliably
detectable and quantifiable with macroscopic quantitative MP-MRI. Non-invasively mapping these features will
provide a clinically useful tool for differentiating aggressive from indolent prostate cancer, and for potentially
targeting with radiation.
This proposal includes two specific aims in response to the goals outlined in PAR-19-264. Specific to
the funding opportunity announcement: Aim 1 will develop radio-pathomic approaches for defining imaging-
based biomarkers capable of distinguishing aggressive from indolent prostate cancer. This will be done at the
microscopic level in Aim 1.1 with histology, and then at the macroscopic level in Aim 1.2 with MP-MRI. Aim 1.3
will test the resilience of the radio-pathomic algorithm by intentionally perturbing the system and algorithms.
Combining the Rad-Path datasets with clinical variables in Aim 1.4 will look to improve sensitivity and specificity
for early detection and differential diagnosis, by correlating our radio-pathomic maps with other omics.
Additionally, included in Aim 1, are extensive validation experiments meant to further establish the robustness
of the radio-pathomic algorithm. In Aim 2, this project will translate the radio-pathomic algorithms to the clinic.
This will include in Aim 2.1 adapting our algorithms to two clinical MR imaging systems (GE and Siemens),
and in Aim 2.2 developing a radio-pathomic driven MRI protocol for serial imaging on a combined MR-LINAC
system, one of only two operational in the US. Completion of this project will provide a powerful set of
quantitative imaging tools to clinicians for improved differentiation of high-risk prostate cancer and for
measuring response to prostate cancer therapy.
抽象的
前列腺癌是最常见的非乳腺癌癌症,影响了七分之一的男性。甚至
当用根治性前列腺切除术治疗时,历史上约有20%的患者出现肿瘤复发。这
提案将集中于两个单独的免费数据集的集成,以更好地区分高风险
患者:多参数磁共振成像(MP-MRI)和整个安装后术后前列腺
病理样本。我们将开发能够预测潜在的悲伤的无线电行为算法
从非侵入性成像的特征是为了区分具有高转移性潜力的前列腺癌。我们的
总体假设是前列腺癌的微观,异质的致病特征是可靠的
可检测和用宏观定量MP-MRI进行量化。这些功能无创映射将
为将侵略性与顽固的前列腺癌区分开来提供临床上有用的工具,并有可能
用辐射靶向。
该提案包括两个特定目标,以响应Par-19-264中概述的目标。特定于
资金机会公告:AIM 1将开发定义成像的无线电方法 -
基于能够将侵略性与顽固前列腺癌区分开的生物标志物。这将在
AIM 1.1的微观水平与组织学,然后在MACROSCOPIC水平上使用MP-MRI在AIM 1.2中。目标1.3
将通过故意扰动系统和算法来测试无线电算法的弹性。
在AIM 1.4中将RAD-PATH数据集与临床变量相结合,以提高灵敏度和特异性
为了提前检测和差异诊断,通过将我们的无线电图与其他OMICS相关联。
此外,AIM 1中包括的是旨在进一步建立鲁棒性的广泛验证实验
无线电神经算法的。在AIM 2中,该项目将将无线电算法转化为诊所。
这将包括在AIM 2.1中将我们的算法调整为两个临床MR成像系统(GE和SIEMENS),
在AIM 2.2中,开发了无线电驱动的MRI协议,用于在合并的MR-LINAC上进行串行成像
系统是美国仅有的两个运营之一。该项目的完成将提供一组强大的
临床医生的定量成像工具改善了高危前列腺癌的分化和
测量对前列腺癌疗法的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter S LaViolette其他文献
Peter S LaViolette的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter S LaViolette', 18)}}的其他基金
Prostate Cancer Radio-Pathomics for Differentiating Clinically Significant Disease
前列腺癌放射病理学用于区分有临床意义的疾病
- 批准号:
10569003 - 财政年份:2021
- 资助金额:
$ 63.2万 - 项目类别:
Prostate Cancer Radio-Pathomics for Differentiating Clinically Significant Disease
前列腺癌放射病理学用于区分有临床意义的疾病
- 批准号:
10357756 - 财政年份:2021
- 资助金额:
$ 63.2万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
NURBS参数化的自交理论与算法研究
- 批准号:12301490
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分组密码算法后门的研究
- 批准号:62302293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时序深度可加网络的算法与学习理论研究
- 批准号:62306338
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 63.2万 - 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
$ 63.2万 - 项目类别:
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
- 批准号:
10805177 - 财政年份:2023
- 资助金额:
$ 63.2万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 63.2万 - 项目类别:
Elucidating mechanisms of cellular communication critical for head and neck cancer progression and metastasis.
阐明对头颈癌进展和转移至关重要的细胞通讯机制。
- 批准号:
10752228 - 财政年份:2023
- 资助金额:
$ 63.2万 - 项目类别: