DNA turnover in myofibers is an unrecognized mechanism for maintaining skeletal muscle health
肌纤维中的 DNA 更新是维持骨骼肌健康的一种未被认识的机制
基本信息
- 批准号:10065144
- 负责人:
- 金额:$ 24.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAgeAgingAreaBeliefBiologyBirdsBromodeoxyuridineCardiac MyocytesCell CycleCell Cycle ArrestCell NucleusCell fusionCellsCellular StressClinicalDNADNA biosynthesisDataDeuterium OxideDevelopmentDiseaseEventExerciseExploratory/Developmental GrantFluorescence-Activated Cell SortingFrequenciesFutureG0 PhaseGoalsGrowthHealthHepatocyteHumanHypertrophyInterventionInvestigationLabelLeadMaintenanceMass Spectrum AnalysisMechanicsMetabolicMethodsMitoticMusMuscleMuscle CellsMuscle FibersMuscular AtrophyMyopathyNatural regenerationPaperParentsProcessRegulationReportingResearchSeminalSignal TransductionSkeletal MuscleSourceSpecificitySumTestingTetanus Helper PeptideTherapeuticTimeTransgenic MiceWorkbasecell growthcell typeclinical developmentcombatdesigndrinking waterhigh rewardhigh riskimprovedin vivoinnovationmouse modelmuscle formmuscle hypertrophynew therapeutic targetnovelnovel strategiespreservationpreventregenerativesatellite cellskeletaltherapeutic target
项目摘要
SUMMARY
There is a continued need for therapies to regenerate muscle and/or prevent muscle loss. The current R21
proposal challenges the dogma that myonuclei are unable to replicate in order to replace lost nuclei or support
hypertrophic growth. This high-risk, high-reward proposal tests the overall hypothesis that myonuclei are capa-
ble of replication, thus answering a long-standing unresolved question. This hypothesis was formed by intri-
guing evidence showing BrdU incorporation by myonuclei in satellite cell-depleted muscle as well as the ap-
parent lifelong maintenance of myonuclei in the absence of satellite cells. Additional support for our overall hy-
pothesis comes from pioneering studies demonstrating the capability of mammalian myocytes to de-
differentiate and re-enter the cell cycle, and the discovery that other cell types once thought to be post-mitotic
have the ability to replicate. To test the overall hypothesis, the specific aim is designed to test if myonuclei
have the ability to replicate during regular cage activity or during overload-induced hypertrophy. The proposed
approach is technically feasible because of the assembled expertise of the investigative team. The approach
uses a novel transgenic mouse that allows for GFP-labeling of myonuclei specifically during a defined period of
time such that no new GFP labeling will occur during the proposed interventions. During the intervention mice
will be administered deuterium oxide (D2O) via drinking water, which labels any newly synthesized DNA during
a period of time when new myonuclei from other cellular sources will not contain GFP. Following the interven-
tion, GFP-labeled myonuclei will be isolated by FACS, and D2O incorporation determined by mass spectrome-
try in GFP+ cells. Given the high specificity of GFP labeling with this design, this innovative approach allows for
unambiguously determining if any myofiber nuclei replicated and under what condition(s). The project is highly
significant because evidence supporting the hypothesis would radically transform the field's current under-
standing of the basic biology of skeletal muscle. Such evidence would make myonuclei a novel therapeutic tar-
get to prevent muscle loss or increase muscle growth. The project is innovative because it combines a novel
myofiber-specific Tet-ON mouse and D2O labeling to unambiguously assess myonuclear DNA synthesis. If
successful, the proposed research would reverse a long-standing dogma and create new areas of investigation
and clinical development. Future studies would characterize additional parameters of myoncuclei turnover, as
well as mechanistic studies to determine how or when myonuclei replicate. The resulting impact is a new ave-
nue for the development of innovative treatments to combat muscle loss with age and diseases of muscle
wasting.
概括
持续需要再生肌肉和/或防止肌肉损失的疗法。目前的R21
该提案挑战了肌核无法复制以取代丢失的细胞核或支持物的教条
肥大性生长。这个高风险、高回报的提议测试了肌核具有能力的总体假设。
复制能力,从而回答了一个长期悬而未决的问题。这个假说是由内部形成的
有力的证据表明,在卫星细胞耗尽的肌肉以及 AP 中,BrdU 被肌核掺入
在没有卫星细胞的情况下,母体终生维持肌核。对我们整体发展的额外支持
该假设来自开创性研究,证明哺乳动物肌细胞有能力去
分化并重新进入细胞周期,以及发现其他细胞类型曾经被认为是有丝分裂后的
具有复制能力。为了检验总体假设,具体目标是检验肌核是否
具有在正常的笼子活动期间或在过载引起的肥大期间复制的能力。拟议的
由于调查团队汇集了专业知识,该方法在技术上是可行的。方法
使用一种新型转基因小鼠,可以在指定的时间内对肌核进行 GFP 标记
时间,以便在建议的干预期间不会出现新的 GFP 标记。干预期间小鼠
将通过饮用水注入氧化氘 (D2O),在过程中标记任何新合成的 DNA
来自其他细胞来源的新肌核不含有 GFP 的一段时间。干预后
化,GFP标记的肌核将通过FACS分离,并通过质谱测定D2O掺入-
在 GFP+ 细胞中尝试。鉴于这种设计的 GFP 标记具有高度特异性,这种创新方法可以
明确确定是否有任何肌纤维核复制以及在什么条件下复制。该项目具有高度
意义重大,因为支持该假设的证据将从根本上改变该领域当前的不足
骨骼肌的基本生物学地位。这些证据将使肌核成为一种新的治疗目标
防止肌肉损失或增加肌肉生长。该项目具有创新性,因为它结合了新颖的
肌纤维特异性 Tet-ON 小鼠和 D2O 标记可明确评估肌核 DNA 合成。如果
如果成功的话,拟议的研究将扭转长期存在的教条并创造新的研究领域
和临床开发。未来的研究将描述肌核周转的其他参数,如
以及确定肌核如何或何时复制的机制研究。由此产生的影响是一个新的途径
开发创新疗法以对抗随年龄增长和肌肉疾病而导致的肌肉损失的必要性
浪费。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Francis Miller其他文献
Benjamin Francis Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Francis Miller', 18)}}的其他基金
Mechanism through which chronically elevated mTOR activity impairs aged muscle recovery after disuse atrophy
长期升高的 mTOR 活性损害废用性萎缩后老年肌肉恢复的机制
- 批准号:
10641855 - 财政年份:2022
- 资助金额:
$ 24.17万 - 项目类别:
Mechanism through which chronically elevated mTOR activity impairs aged muscle recovery after disuse atrophy
长期升高的 mTOR 活性损害废用性萎缩后老年肌肉恢复的机制
- 批准号:
10473096 - 财政年份:2022
- 资助金额:
$ 24.17万 - 项目类别:
Determining the context specificity of metformin treatment on muscle mitochondria and healthspan
确定二甲双胍治疗对肌肉线粒体和健康寿命的背景特异性
- 批准号:
10462944 - 财政年份:2022
- 资助金额:
$ 24.17万 - 项目类别:
Dissecting the integrated mechanisms of protein turnover to prevent proteostatic decline with aging
剖析蛋白质周转的综合机制,以防止蛋白质沉积随衰老而下降
- 批准号:
10706458 - 财政年份:2022
- 资助金额:
$ 24.17万 - 项目类别:
Dissecting the integrated mechanisms of protein turnover to prevent proteostatic decline with aging
剖析蛋白质周转的综合机制,以防止蛋白质沉积随衰老而下降
- 批准号:
10390925 - 财政年份:2022
- 资助金额:
$ 24.17万 - 项目类别:
Determining the context specificity of metformin treatment on muscle mitochondria and healthspan
确定二甲双胍治疗对肌肉线粒体和健康寿命的背景特异性
- 批准号:
10596174 - 财政年份:2022
- 资助金额:
$ 24.17万 - 项目类别:
DNA turnover in myofibers is an unrecognized mechanism for maintaining skeletal muscle health
肌纤维中的 DNA 更新是维持骨骼肌健康的一种未被认识的机制
- 批准号:
10239252 - 财政年份:2020
- 资助金额:
$ 24.17万 - 项目类别:
A novel approach to understand a mechanism of proteostatic decline with aging
一种理解衰老过程中蛋白质抑制下降机制的新方法
- 批准号:
10229298 - 财政年份:2020
- 资助金额:
$ 24.17万 - 项目类别:
Does insulin sensitivity impact the potential of metformin to slow aging?
胰岛素敏感性是否会影响二甲双胍延缓衰老的潜力?
- 批准号:
10579890 - 财政年份:2019
- 资助金额:
$ 24.17万 - 项目类别:
Does insulin sensitivity impact the potential of metformin to slow aging?
胰岛素敏感性是否会影响二甲双胍延缓衰老的潜力?
- 批准号:
9999395 - 财政年份:2019
- 资助金额:
$ 24.17万 - 项目类别:
相似国自然基金
TBX20在致盲性老化相关疾病年龄相关性黄斑变性中的作用和机制研究
- 批准号:82220108016
- 批准年份:2022
- 资助金额:252 万元
- 项目类别:国际(地区)合作与交流项目
LncRNA ALB调控LC3B活化及自噬在体外再生晶状体老化及年龄相关性白内障发病中的作用及机制研究
- 批准号:81800806
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
APE1调控晶状体上皮细胞老化在年龄相关性白内障发病中的作用及机制研究
- 批准号:81700824
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
KDM4A调控平滑肌细胞自噬在年龄相关性血管老化中的作用及机制
- 批准号:81670269
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
老年人一体化编码的认知神经机制探索与干预研究:一种减少与老化相关的联结记忆缺陷的新途径
- 批准号:31470998
- 批准年份:2014
- 资助金额:87.0 万元
- 项目类别:面上项目
相似海外基金
Redox stress resilience in aging skeletal muscle
衰老骨骼肌的氧化还原应激恢复能力
- 批准号:
10722970 - 财政年份:2023
- 资助金额:
$ 24.17万 - 项目类别:
Hypothalamic Sleep-Wake Neuron Defects in Alzheimer’s disease
阿尔茨海默病中的下丘脑睡眠-觉醒神经元缺陷
- 批准号:
10770001 - 财政年份:2023
- 资助金额:
$ 24.17万 - 项目类别:
High resolution lineage tracing of developmental hematopoiesis
发育造血的高分辨率谱系追踪
- 批准号:
10585400 - 财政年份:2023
- 资助金额:
$ 24.17万 - 项目类别:
Reversal of Age-Associated Damage in the Planarian Germline
涡虫种系中年龄相关损伤的逆转
- 批准号:
10606234 - 财政年份:2023
- 资助金额:
$ 24.17万 - 项目类别:
Cellular mechanisms of NLRP3 activation by ALCAT1 in diet-induced obesity
饮食诱导肥胖中 ALCAT1 激活 NLRP3 的细胞机制
- 批准号:
10658507 - 财政年份:2023
- 资助金额:
$ 24.17万 - 项目类别: