Circulating Red Blood Cell Based Nanosensors for Continuous, Real-Time Drug Monitoring
基于循环红细胞的纳米传感器,用于连续、实时药物监测
基本信息
- 批准号:10062973
- 负责人:
- 金额:$ 34.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmilorideAnimalsAntipsychotic AgentsAreaBiodistributionBloodBlood CellsBlood CirculationBlood VesselsBlood VolumeBlood specimenCalibrationCaviaCellsChemistryConcentration measurementDangerousnessDetectionDevelopmentDevicesDiffuseDisease modelDiureticsDoseDrug KineticsDrug MonitoringDrug PrescriptionsDrug TargetingEncapsulatedEquilibriumErythrocytesExcretory functionExhibitsFlow CytometryFluorescenceForearmFutureGeometryGoalsHumanImmune responseImplantIndividualIntercellular FluidIonsLightLithiumLithium CarbonateMeasurableMeasurementMeasuresMedicineMetabolismMonitorMusOptical ReadersOpticsOutcomePatientsPharmaceutical PreparationsPhasePopulationProblem SolvingPropertyRattusReaderReportingResearchSafetySamplingSideSignal TransductionSkinSodiumStreamSystemTechniquesTechnologyTestingTherapeuticTherapeutic IndexTimeTissuesToxic effectTranslationsValidationWeightabsorptionbasebiomaterial compatibilitydesigndisorder controldosagedrug discoverydrug-sensitivefluorophorein vitro Modelin vivoinnovative technologiesinsightnanosensorsnew technologynovelperipheral bloodpersonalized therapeuticphantom modelratiometricresearch clinical testingresponsesalt sensitivesensorsensor technologyside effectsignal processingsmall moleculetherapy outcome
项目摘要
PROJECT SUMMARY
In this project we will develop new technology for non-invasive and continuous therapeutic drug
monitoring. Drug dosing is normally prescribed based on population averages, but in most cases
direct clinical testing of systemic drug levels is performed infrequently or not at all. This is particularly
problematic for drugs with narrow therapeutic indices, where treatment can be ineffective or outright
toxic. Therefore, there is a persistent need for new technology for routine drug monitoring to allow
better therapeutic outcomes while minimizing side-effects.
We propose to address this problem by developing drug-sensitive fluorescent nanosensors that will
use circulating red blood cell (RBC) ghosts as a vehicle to remain in circulations. By using near-
infrared fluorophores at high local concentrations, these will produce drug-dependent signals that will
be measurable with an external optical reader. Because unmodified RBCs are known to stay in
circulation for weeks or months, this will allow long-term, continuous monitoring directly in the
peripheral blood. Although there are many potential uses for this technology, we will first develop it for
monitoring lithium and sodium as examples of a prescribed drug and its toxic side-effect.
The project has three main phases. First we will design fluorescent red blood cell (f-RBC)
nanosensors that circulate stably in the blood stream. These will encapsulate novel fluorescent
sensor constructs for accurate quantification of Lithium and sodium blood concentrations. Second, we
will develop an f-RBC fluorescence reader that for non-invasive and accurate quantification of f-RBC
signals in vivo without having to draw blood samples. The reader will measure circulating f-RBC
sensors in major blood vessels in the forearm in diffuse reflectance configuration. Third, we will
validate and optimize our f-RBC sensor and reader in optical flow-phantom models in vitro and in rats
treated with lithium and a diuretic in vivo.
Longer term, we anticipate that there will be many uses for our f-RBC nanosensor technology for
personalized therapeutic dose monitoring in many areas of medicine. The technology could also be
extended to monitor effects on downstream drug targets in the future.
项目摘要
在这个项目中,我们将开发用于非侵入性和连续治疗药物的新技术
监视。药物给药通常是根据人口平均值规定的,但在大多数情况下
全身药物水平的直接临床测试很少或根本不进行。尤其是
对于患有狭窄治疗指数的药物的问题,治疗可能无效或直接治疗
有毒的。因此,持续需要新技术来进行常规药物监测以允许
更好的治疗结果,同时最小化副作用。
我们建议通过开发对药物敏感的荧光纳米传感器来解决这个问题
使用循环的红细胞(RBC)幽灵作为循环中的媒介。通过接近 -
红外荧光团在高局部浓度下,这些将产生依赖药物的信号
使用外部光学读取器可衡量。因为已知未修改的RBC留在
循环数周或几个月,这将允许直接在
外周血。尽管该技术有许多潜在用途,但我们将首先开发它
监测锂和钠作为处方药及其有毒副作用的例子。
该项目有三个主要阶段。首先,我们将设计荧光红细胞(F-RBC)
在血液中稳定循环的纳米传感器。这些将封装新的荧光
传感器构建体,以准确定量锂和钠血液浓度。第二,我们
将开发F-RBC荧光读取器,该读取器用于非侵入性和精确定量F-RBC
体内信号无需抽血。读者将测量循环F-RBC
弥漫性反射率构型中前臂主要血管中的传感器。第三,我们会的
在体外和大鼠中验证和优化我们的F-RBC传感器和读取器
用锂和利尿剂在体内处理。
从长远来看,我们预计我们的F-RBC纳米传感器技术将有很多用途
许多医学领域的个性化治疗剂量监测。该技术也可能是
扩展以监测将来对下游药物靶标的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heather A Clark其他文献
Heather A Clark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heather A Clark', 18)}}的其他基金
Circulating Red Blood Cell Based Nanosensors for Continuous, Real-Time Drug Monitoring
基于循环红细胞的纳米传感器,用于连续、实时药物监测
- 批准号:
10174441 - 财政年份:2018
- 资助金额:
$ 34.62万 - 项目类别:
Optical Nanosensors Detect Neurotransmitter Release in the Peripheral Nervous System
光学纳米传感器检测周围神经系统中神经递质的释放
- 批准号:
10003578 - 财政年份:2017
- 资助金额:
$ 34.62万 - 项目类别:
Optical Nanosensors Detect Neurotransmitter Release in the Peripheral Nervous System
光学纳米传感器检测周围神经系统中神经递质的释放
- 批准号:
9746805 - 财政年份:2017
- 资助金额:
$ 34.62万 - 项目类别:
Polymer-Free Nanosensors To Visualize Biochemical Dynamics in Dendritic Spines
无聚合物纳米传感器可视化树突棘生化动力学
- 批准号:
8660103 - 财政年份:2013
- 资助金额:
$ 34.62万 - 项目类别:
Polymer-Free Nanosensors To Visualize Biochemical Dynamics in Dendritic Spines
无聚合物纳米传感器可视化树突棘生化动力学
- 批准号:
8588718 - 财政年份:2013
- 资助金额:
$ 34.62万 - 项目类别:
Ion Selective Quantum Dots for Intracellular Mapping of Sodium Sparks in Cardiac
用于心脏钠火花细胞内图谱的离子选择性量子点
- 批准号:
7451559 - 财政年份:2008
- 资助金额:
$ 34.62万 - 项目类别:
Ion Selective Quantum Dots for Intracellular Mapping of Sodium Sparks in Cardiac
用于心脏钠火花细胞内图谱的离子选择性量子点
- 批准号:
8074080 - 财政年份:2008
- 资助金额:
$ 34.62万 - 项目类别:
Ion Selective Quantum Dots for Intracellular Mapping of Sodium Sparks in Cardiac
用于心脏钠火花细胞内图谱的离子选择性量子点
- 批准号:
8260333 - 财政年份:2008
- 资助金额:
$ 34.62万 - 项目类别:
Ion Selective Quantum Dots for Intracellular Mapping of Sodium Sparks in Cardiac
用于心脏钠火花细胞内图谱的离子选择性量子点
- 批准号:
8111406 - 财政年份:2008
- 资助金额:
$ 34.62万 - 项目类别:
Ion Selective Quantum Dots for Intracellular Mapping of Sodium Sparks in Cardiac
用于心脏钠火花细胞内图谱的离子选择性量子点
- 批准号:
7619126 - 财政年份:2008
- 资助金额:
$ 34.62万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Intracellular functions and mechanisms of alphavirus ion channel 6K
甲病毒离子通道6K的细胞内功能和机制
- 批准号:
10727819 - 财政年份:2023
- 资助金额:
$ 34.62万 - 项目类别:
The role of kidney epithelial cells specific EP4 receptors in blood pressure control
肾上皮细胞特异性EP4受体在血压控制中的作用
- 批准号:
10586944 - 财政年份:2022
- 资助金额:
$ 34.62万 - 项目类别:
Sex disparities in aldosterone-dependent renal Na+ transport and blood pressure control
醛固酮依赖性肾钠转运和血压控制的性别差异
- 批准号:
10461199 - 财政年份:2021
- 资助金额:
$ 34.62万 - 项目类别:
Role of PON3 in regulating renal Na+ and K+ homeostasis
PON3 在调节肾钠钾稳态中的作用
- 批准号:
10338835 - 财政年份:2021
- 资助金额:
$ 34.62万 - 项目类别:
Sex disparities in aldosterone-dependent renal Na+ transport and blood pressure control
醛固酮依赖性肾钠转运和血压控制的性别差异
- 批准号:
10682559 - 财政年份:2021
- 资助金额:
$ 34.62万 - 项目类别: