Structural investigation of the gating and regulatory mechanism of voltage-gated Ca2+ channels
电压门控Ca2通道的门控和调节机制的结构研究
基本信息
- 批准号:10059258
- 负责人:
- 金额:$ 32.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAdaptor Signaling ProteinAlgorithmsArrhythmiaBasic ScienceBindingBiochemicalBiological AssayCalciumCalcium ChannelCalcium ionCardiovascular DiseasesCell DeathCell membraneCellsChemicalsClinical DataComplexCouplingCryoelectron MicroscopyCysteineDiseaseDissectionDockingDrug IndustryDrug TargetingElectron MicroscopeElectrophysiology (science)EpilepsyEventFDA approvedFutureGenetic TranscriptionGoalsHomology ModelingHypertensionHypokalemic periodic paralysisImageInvestigationIonsIsradipineLigandsMalignant hyperpyrexia due to anesthesiaMediatingMembraneMembrane PotentialsMethodsMolecularMolecular ConformationMutagenesisMutationMutation AnalysisMyopathyNimodipineOryctolagus cuniculusPeptidesPharmaceutical PreparationsPharmacotherapyPhasePhysiologicalPhysiological ProcessesPlayPreparationProductionProteinsRegulationReportingResearchResolutionRoleRyR1Ryanodine Receptor Calcium Release ChannelSamplingSideSignal TransductionSiteSkeletal MuscleSpecificityStructureStructure-Activity RelationshipTitanToxinVerapamilWorkbasecrosslinkdensitydesigndrug developmentdrug discoveryelectron energygabapentinimprovedinterestmolecular dynamicsnervous system disorderneurotransmissionparticlepregabalinpreventreconstructionresponsetoolvoltage
项目摘要
Calcium ions (Ca2+) play a critical role in diverse physiological processes such as contraction, secretion,
neurotransmission, gene transcription, and cell death. The voltage-gated calcium (Cav) channels open upon
membrane depolarization, converting the membrane electrical signals to intracellular Ca2+-mediated events.
Malfunction or dysregulation of Cav channels is associated with a broad spectrum of neurological,
cardiovascular, and muscular disorders. Despite the physiological and pathophysiological significance of Cav
channels, further progress has been acutely limited by the dearth of structural information. Indeed, the only
available structure of any eukaryotic Cav channel is that of the Cav1.1 channel complex, which my group
determined using single-particle electron cryo-microscopy (cryo-EM). Cav channels are targeted by multiple
FDA-approved drugs for the treatment of neurological and cardiovascular disorders, and their activity is
modulated by various peptide toxins. These ligands could be used to stabilize the Cav channels in various
functional states, facilitating the dissection of the gating mechanism. In turn, structural elucidation of Cav
channels in complex with the drugs and toxins will elucidate the molecular basis for their modes of action.
These structures will guide mutagenesis for functional and mechanistic characterizations, serve as an
important framework for homology modeling, ligand docking, and molecular dynamics simulation analyses, and
eventually facilitate potential drug discovery. The overarching goal of this proposal is to achieve an improved
mechanistic understanding of Cav channels through high-resolution structural determination of Cav1.1 in
complex with various modulatory ligands using single-particle cryo-EM. In Aim 1, we will further improve the
resolution of the Cav1.1 channel to beyond 3 Å by optimizing cryo-sample preparation and hardware
configuration. Improved resolution will afford a more accurate structural template for molecular dynamics
simulation analysis. In Aim 2, we will biochemically recapitulate the interactions between the purified Cav1.1
channel and various drugs and toxins, and elucidate the structures of Cav1.1 in complex with well-defined
ligands. These structures will guide the design of mutations for functional characterizations and mechanistic
investigations in cell-based electrophysiological assays. In Aim 3, we will investigate the structural basis for the
modulation of Cav1.1 by the adaptor protein Stac3. This study will encompass crosslinking, mass spectrometric
analysis, and new algorithms for cryo-EM to unravel the recognition between Stac3 and Cav1.1. Completion of
the proposed research will advance our understanding of the function and disease-causing mechanisms of Cav
channels as well as facilitate future drug discovery.
钙离子(Ca2+)在潜水员物理过程中起关键作用,例如收缩,分泌,
神经传递,基因转录和细胞死亡。电压门控钙(CAV)通道打开
膜去极化,将膜电信号转换为细胞内Ca2+介导的事件。
CAV通道的故障或失调与广泛的神经系统有关
心血管和肌肉疾病。尽管CAV具有物理和病理生理学意义
渠道,由于结构信息的死亡,进一步的进步受到了严重限制。确实,唯一的
任何真核CAV通道的可用结构都是Cav1.1通道复合物的结构,我的小组
使用单粒子电子冷冻微镜(Cryo-EM)确定。 CAV通道是由多个针对的
FDA批准的药物用于治疗神经系统和心血管疾病,其活性是
由各种肽毒素调节。这些配体可用于稳定各种骑士通道
功能状态,支持门控机制的解剖。反过来,CAV的结构阐明
与药物和毒素复杂的通道将阐明其作用模式的分子基础。
这些结构将指导功能和机械特征的诱变,并作为
同源建模,配体对接和分子动力学仿真分析的重要框架,以及
最终有利于潜在的药物发现。该提议的总体目标是实现改进
通过高分辨率的CAV1.1的机械理解对CAV通道的理解
使用单粒子冷冻EM与各种调节配体的复合物。在AIM 1中,我们将进一步改善
通过优化冷冻样本制备和硬件,将CAV1.1通道分辨率超过3Å
配置。改进的分辨率将为分子动力学提供更准确的结构模板
仿真分析。在AIM 2中,我们将在生化上概括纯化的Cav1.1之间的相互作用
通道和各种药物和毒素,并阐明了Cav1.1的结构,并定义明确
配体。这些结构将指导功能特征和机械性的突变设计
基于细胞的电生理测定法。在AIM 3中,我们将研究
衔接蛋白STAC3对CAV1.1的调节。这项研究将涵盖交联,质谱法
分析和冷冻EM的新算法,以阐明STAC3和CAV1.1之间的识别。完成
拟议的研究将提高我们对CAV功能和致病机制的理解
渠道以及促进未来的药物发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nieng Yan其他文献
Nieng Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nieng Yan', 18)}}的其他基金
Structural investigation of the gating and regulatory mechanism of voltage-gated Ca2+ channels
电压门控Ca2通道的门控和调节机制的结构研究
- 批准号:
10311489 - 财政年份:2019
- 资助金额:
$ 32.94万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
A novel role for developmental microglial-parvalbumin interneuron interactions in adult alcohol drinking behavior.
发育性小胶质细胞-小白蛋白中间神经元相互作用在成人饮酒行为中的新作用。
- 批准号:
10604705 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
A novel role for developmental microglial-parvalbumin interneuron interactions in adult alcohol drinking behavior.
发育性小胶质细胞-小白蛋白中间神经元相互作用在成人饮酒行为中的新作用。
- 批准号:
10693892 - 财政年份:2022
- 资助金额:
$ 32.94万 - 项目类别:
The role of salt inducible kinases in renal PTH action
盐诱导激酶在肾 PTH 作用中的作用
- 批准号:
10207599 - 财政年份:2020
- 资助金额:
$ 32.94万 - 项目类别:
Structural investigation of the gating and regulatory mechanism of voltage-gated Ca2+ channels
电压门控Ca2通道的门控和调节机制的结构研究
- 批准号:
10311489 - 财政年份:2019
- 资助金额:
$ 32.94万 - 项目类别:
Project 2 Title: The brain brush border and microglial activation in response to ethanol
项目 2 标题:乙醇反应中的脑刷状缘和小胶质细胞激活
- 批准号:
10609541 - 财政年份:2016
- 资助金额:
$ 32.94万 - 项目类别: