Site-Specific Correction of Sickle Cell Disease Using Acoustofludic Gene Delivery
使用声流控基因传递对镰状细胞病进行位点特异性校正
基本信息
- 批准号:10023174
- 负责人:
- 金额:$ 3.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2021-06-10
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAdultAffectAutoimmune DiseasesAutologousAutologous TransplantationBiological AssayCD34 geneCRISPR/Cas technologyCell LineCell Membrane PermeabilityCell TherapyCell membraneCell modelCell physiologyCellsClinicalClinical ManagementClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsComplexDNA Sequence AlterationDevelopmentDevicesDiseaseElectroporationEngraftmentErythrocytesErythroidFlow CytometryFoundationsFrequenciesGene ClusterGene DeliveryGene-ModifiedGenerationsGenesGoalsHeart DiseasesHematological DiseaseHematopoietic Stem Cell TransplantationHematopoietic stem cellsHemoglobinHemoglobinopathiesHereditary DiseaseHigh Pressure Liquid ChromatographyHuman Cell LineImprove AccessInterventionK-562Lung diseasesMechanicsMediatingMedicalMethodsMicrofluidicsModelingMutationOutputPatientsPeripheral Blood Mononuclear CellPermeabilityPolymerase Chain ReactionProcessProductionPropertyQuality of lifeReactionRecoveryResearchRibonucleoproteinsRiskRunningSickle CellSickle Cell AnemiaSiteStem cell transplantStructureSystemT-LymphocyteTechniquesTechnologyTestingTherapeuticToxic effectTransfectionTranslationsXenograft procedurebasebeta Globinbioinformatics toolcell injuryclinical practiceclinical translationclinically relevantcostdesigngene correctiongene therapygraft vs host diseaseimmunogenicinnovationinsertion/deletion mutationinterdisciplinary collaborationlipofectionmouse modelnew technologynext generation sequencingprocessing speedrepairedstemstem cell populationstem cell therapystem cellstargeted nucleasesuptakevectorvoltage
项目摘要
Project Summary
Sickle cell disease (SCD) is among the most common monogenetic inherited disorders. Clinical
management of SCD is primarily supportive. However, in the most severe cases, the only definitive
curative option for patients suffering from SCD is an allogeneically matched hematopoietic stem cell
transplant. This hemoglobinopathy directly affects the structure and function of hemoglobin, leading to
deficiencies of β-globin chains in the development of functional adult hemoglobin. Furthermore, the
lack of fully matched donors for patients to receive a stem cell transplant runs the risk of adverse
immunogenic reactions, such as auto-immune disorders or graft-versus-host disease. Recent efforts to
address this disease and its clinical sequela have focused on gene therapies based on the
transplantation of autologous gene-modified hematopoietic stem & progenitor cells (HSPC), where a
patient's own cells are corrected and reinfused to enable production of fully functioning erythrocytes.
However, non-viral strategies for the batch processing of stem cell gene therapies are known to be
inefficient and are unable to meet clinical demands. We hypothesize that the optimization of an
acoustofluidic therapeutic platform that physically permeabilizes cells for the delivery of
CRISPR-Cas9 biomolecules will address this technologic gap. This high-throughput gene-delivery
strategy will enable our long-term goal to generate gene-modified stem cell therapies quickly and
efficiently for curing sickle cell disease. This physical permeabilization process renders target cells
transiently permeable, enabling vector uptake while minimizing damage to the cell membrane and
maintaining high levels of viability. In order to achieve our clinical target, our proposed specific
aims include: 1) optimize acoustofluidic gene delivery in model cell lines harboring the sickle
cell mutation and 2) evaluate site-specific correction of the sickle cell disease mutation in
hematopoietic stem and progenitor cells. Given the utility of this acoustofluidic technology, there is
a wide range of heart, lung, and blood disorders that can be addressed, overcoming the state of the art
for gene delivery. We expect the generation of rapid and safe gene-modified stem cell therapies using
our acoustofludic technology will greatly improve access to these medical interventions and the quality
of life for patients with the most severe cases of SCD.
项目概要
镰状细胞病(SCD)是最常见的临床单基因遗传性疾病之一。
SCD 的治疗主要是支持性的,但在最严重的情况下,唯一确定的方法是支持性治疗。
SCD 患者的治疗选择是同种异体匹配的造血干细胞
这种血红蛋白病直接影响血红蛋白的结构和功能,导致移植。
功能性成人血红蛋白发育过程中β-珠蛋白链的缺陷。
缺乏完全匹配的供体供患者接受干细胞移植会带来不良风险
免疫原性反应,例如自身免疫性疾病或移植物抗宿主病。
解决这种疾病及其临床后遗症的重点是基于
自体基因修饰造血干细胞和祖细胞(HSPC)移植,其中
患者自身的细胞被纠正并重新注入,以产生功能齐全的红细胞。
然而,众所周知,用于批量处理干细胞基因疗法的非病毒策略是
效率低下,无法满足临床需求。
声流控治疗平台,可对细胞进行物理渗透以输送
CRISPR-Cas9 生物分子将弥补这一技术差距。
该战略将使我们的长期目标能够快速产生基因修饰的干细胞疗法
这种物理透化过程可有效治疗镰状细胞病。
瞬时渗透,实现载体摄取,同时最大限度地减少对细胞膜的损害
保持高水平的活力为了实现我们的临床目标,我们提出了具体的建议。
目标包括:1)优化携带镰刀的模型细胞系中的声流控基因传递
细胞突变和 2) 评估镰状细胞病突变的位点特异性校正
鉴于这种声流控技术的实用性,造血干细胞和祖细胞。
可以解决多种心脏、肺和血液疾病,克服现有技术
我们期望使用快速且安全的基因修饰干细胞疗法。
我们的声流控技术将极大地改善这些医疗干预措施的可及性和质量
最严重的 SCD 病例患者的生命。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Nathaniel Belling其他文献
Jason Nathaniel Belling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 3.23万 - 项目类别:
Characterizing the generative mechanisms underlying the cortical tracking of natural speech
表征自然语音皮质跟踪背后的生成机制
- 批准号:
10710717 - 财政年份:2023
- 资助金额:
$ 3.23万 - 项目类别:
Integrating single-cell connectivity, gene expression, and function in zebra finches
整合斑胸草雀的单细胞连接、基因表达和功能
- 批准号:
10657971 - 财政年份:2023
- 资助金额:
$ 3.23万 - 项目类别:
Vital capacity & airflow measurement for voice evaluation: A vortex whistle system
肺活量
- 批准号:
10737248 - 财政年份:2023
- 资助金额:
$ 3.23万 - 项目类别:
Effects of deep brain stimulation (DBS) on laryngeal function and associated behaviors in Parkinson Disease
深部脑刺激(DBS)对帕金森病喉功能和相关行为的影响
- 批准号:
10735930 - 财政年份:2023
- 资助金额:
$ 3.23万 - 项目类别: