Finding emergent structure in multi-sample biological data with the dual geometry of cells and features
利用细胞和特征的双重几何形状在多样本生物数据中寻找新兴结构
基本信息
- 批准号:10022130
- 负责人:
- 金额:$ 35.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBiologicalBiomedical TechnologyCellsCellular StructuresCollectionComplexDataData AnalysesData ScienceData SetDengueDiseaseEffectivenessEnvironmentFoundationsGene ExpressionGene ProteinsGenomicsGeometryGraphHealthImmunityImmunotherapyLearningLocationLyme DiseaseMeasurementMethodsNoisePatientsResearchResolutionSamplingSignal TransductionStructureTechniquesTimeZIKAalgorithmic methodologiesbiological heterogeneitycohortcomputerized data processingdata explorationdeep learningdenoisingdriving forcemultiple datasetsnew technologynovelpatient populationsignal processing
项目摘要
A fundamental question in biomedical data analysis is how to capture biological heterogeneity and characterize the
complex spectrum of health states (or disease conditions) in patient cohorts. Indeed, much effort has been invested in
developing new technologies that provide groundbreaking collections of genomic information at a single cell
resolution, unlocking numerous potential advances in understanding the progression and driving forces of biological
states. However, these new biomedical technologies produce large volumes of data, quantified by numerous
measurements, and often collected in many batches or samples (e.g., from different patients, locations, or times).
Exploration and understanding of such data are challenging tasks, but the potential for new discoveries at a level
previously not possible justifies the considerable effort required to overcome these difficulties.
In this project we focus on multi-sample single-cell data, e.g., from a multi-patient cohort, where data points
represent cells, data features represent gene expressions or protein abundances, and samples (e.g., considered as
separate batches or datasets) represent patients. We consider a duality or interaction between constructing an
intrinsic geometry of cells (e.g., with manifold learning techniques) and processing data features as signals over it
(e.g., with graph signal processing techniques). We propose the utilization of this duality for several data exploration
tasks, including data denoising, identifying noise-invariant phenomena, cluster characterization, and aligning cellular
features over multiple datasets. Furthermore, we expect the dual multiresolution organization of data points and
features to allow us to compute aggregated signatures that represent patients, and then provide a novel data
embedding that reveals multiscale structure from the cellular level to the patient level.
The proposed research combines recent advances in several fields at the forefront of data science, including
geometric deep learning, manifold learning, and harmonic analysis. The methods developed in this project will provide
novel advances in each of these fields, while also establishing new relations between them. Furthermore, the
challenges addressed by these methods are a foundational prerequisite for new advances in genomic research, and
more generally in empirical data analysis where data is collected in varying experimental environments. The
developed algorithms and methods in this project will be validated in several biomedical settings, including
characterizing Zika immunity in Dengue patients, tracking progress of Lyme disease, and predicting the effectiveness
of immunotherapy.
生物医学数据分析中的一个基本问题是如何捕获生物异质性并表征
患者队列中健康状态(或疾病状况)的复杂谱。确实,已经投入了很多努力
开发新技术,可在单个单元格上提供开创性的基因组信息集合
解决方案,释放了理解生物学的发展和驱动力的许多潜在进步
国家。但是,这些新的生物医学技术产生了大量数据,由许多数据量化
测量,通常在许多批次或样品中收集(例如,来自不同的患者,位置或时间)。
探索和对此类数据的理解是具有挑战性的任务,但是在一个层面上进行新发现的潜力
以前无法证明克服这些困难所需的巨大努力。
在这个项目中,我们关注多样本单细胞数据,例如,从多人队列中,数据点
表示细胞,数据特征代表基因表达或蛋白质丰度,以及样品(例如,被视为
单独的批次或数据集)代表患者。我们考虑构造一个二元性或相互作用
细胞的固有几何形状(例如,具有流动学习技术)和处理数据特征作为信号
(例如,使用图形信号处理技术)。我们建议将这种二元性利用用于多个数据探索
任务,包括数据降级,识别噪声不变现象,群集表征和对齐蜂窝
多个数据集的功能。此外,我们期望数据点的双重分辨率组织
功能使我们能够计算代表患者的聚合签名,然后提供新的数据
嵌入从细胞水平到患者水平的多尺度结构的嵌入。
拟议的研究结合了数据科学最前沿的几个领域的最新进展,包括
几何深度学习,多种学习和谐波分析。该项目中开发的方法将提供
在每个领域的每个领域都有新颖的进步,同时也建立了它们之间的新关系。此外,
这些方法提出的挑战是基因组研究新进步的基本先决条件,以及
在经验数据分析中,更普遍地在不同的实验环境中收集数据。这
该项目中开发的算法和方法将在几种生物医学设置中进行验证,包括
表征登革热患者中寨卡病毒免疫力,跟踪莱姆病的进度并预测有效性
免疫疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew John Hirn其他文献
Matthew John Hirn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew John Hirn', 18)}}的其他基金
Finding emergent structure in multi-sample biological data with the dual geometry of cells and features
利用细胞和特征的双重几何形状在多样本生物数据中寻找新兴结构
- 批准号:
10475044 - 财政年份:2019
- 资助金额:
$ 35.32万 - 项目类别:
Finding emergent structure in multi-sample biological data with the dual geometry of cells and features
利用细胞和特征的双重几何结构在多样本生物数据中寻找新兴结构
- 批准号:
9903563 - 财政年份:2019
- 资助金额:
$ 35.32万 - 项目类别:
相似国自然基金
基于机器学习算法的针刺干预偏头痛预后差异生物学机制和临床-多组学预测模型构建研究
- 批准号:82374572
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
微生物生态系统共性规律探索及其对扰动响应的预测算法研究
- 批准号:32300078
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于耦合矩阵-张量分解算法开发环境微生物标志物挖掘工具
- 批准号:42377106
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于生成式人工智能的易合成与高生物活性的分子三维结构设计
- 批准号:22373085
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
面向可信虹膜识别的脉冲表达学习
- 批准号:62306307
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 35.32万 - 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
- 批准号:
10543569 - 财政年份:2023
- 资助金额:
$ 35.32万 - 项目类别:
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
- 批准号:
10551576 - 财政年份:2023
- 资助金额:
$ 35.32万 - 项目类别:
Biomarkers for Brain Resetting as an Assistive Tool in the Treatment of Status Epilepticus
大脑重置生物标志物作为治疗癫痫持续状态的辅助工具
- 批准号:
10698969 - 财政年份:2023
- 资助金额:
$ 35.32万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 35.32万 - 项目类别: