Technology for efficient simulation of cancer cell transport
高效模拟癌细胞运输的技术
基本信息
- 批准号:10059089
- 负责人:
- 金额:$ 37.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAutomobile DrivingBehaviorBiomedical ResearchBiophysicsBlood VesselsBlood flowCancer BiologyCause of DeathCell CommunicationCell modelCellsCellular biologyCessation of lifeCodeCollaborationsCommunitiesComplementComplexComputer ModelsComputersDataDevelopmentDevicesDiagnosticDisease ProgressionDisseminated Malignant NeoplasmExhibitsExtravasationFosteringFutureGeometryGoalsIn VitroIndividualInfrastructureIntuitionKnowledgeLeadLinkLiquid substanceLocationMalignant NeoplasmsMethodsMicrofluidic MicrochipsModelingMorphologyMovementNeoplasm Circulating CellsNeoplasm MetastasisOutcomes ResearchPatientsPatternPenetrationPlant RootsProcessPropertyResearchResearch PersonnelResolutionRoleScientistSiteSoftware FrameworkSoftware ToolsStructureTechnologyTestingTherapeuticTumor Cell MigrationUnited StatesVascular SystemWorkanticancer researchbasebiomechanical modelbiophysical propertiesbioprintingcancer cellcell behaviorcell motilitycell typecomputer infrastructurecomputing resourcesexperienceexperimental studyhydrodynamic modelin silicoinsightinterestmanmathematical modelmechanical propertiesnovel diagnosticsnovel therapeuticsopen sourcepredictive modelingsimulationtooltumor
项目摘要
Cancer is the attributed cause of death in one in four cases in the United States and metastasis,
a complex multistep process leading to the spread of tumors, is responsible for more than 90%
of these deaths. However, predicting the location of these secondary tumor sites is still an
elusive goal. One of the fundamental hurdles is to understand the trajectory of cell movement
through the vascular system and the likelihood of penetration of the vessel wall. Studies have
demonstrated that more than 50% of cancer metastatic sites could be explained by the blood
flow pattern between the primary and secondary; however, the development of predictive
models is still needed. Insight into the underlying mechanisms of cancer metastasis will provide
insight into disease progression and lead to the development of new diagnostic or therapeutic
methods targeting regions of the vasculature likely to incur secondary tumor sites.
Tools that can be easily tuned to allow not only patient-specific but cell-specific modeling would
complement ongoing in vitro experiments and provide this critical insight. Such computational
models would allow researchers to probe the influence of different biophysical properties on
cancer-specific cell behavior without the need for either expensive experimental trials for each
cell-type or extrapolate from findings for one cancer to apply to another. An expected outcome
of this research to create a usable, scalable, and extensible software framework for use by the
wider biomedical research community to study the role of biophysical properties on a cell's
transport and potential arrest. On such a platform, users will be able to introduce models of
their cells-of-interest and perform simulations on them with models we (or others in the
community) have developed. The ability to seamlessly introduce new cell-types with minimal
effort will foster entirely new collaborations between researchers and provide biologists who
would not traditionally leverage computational resources to study cell-specific properties in the
context of realistic vascular geometries. This work will set the stage for future studies expanding
the capabilities of this open source model.
在美国,癌症是四分之一病例的死因,而且转移是癌症的主要原因
导致肿瘤扩散的复杂多步骤过程,是 90% 以上的原因
这些死亡。然而,预测这些继发性肿瘤部位的位置仍然是一个难题
难以捉摸的目标。基本障碍之一是了解细胞运动的轨迹
通过血管系统和穿透血管壁的可能性。研究有
证明超过 50% 的癌症转移部位可以通过血液来解释
初级和次级之间的流动模式;然而,预测技术的发展
仍然需要模型。深入了解癌症转移的潜在机制将提供
洞察疾病进展并导致新诊断或治疗方法的开发
针对可能产生继发性肿瘤部位的脉管系统区域的方法。
可以轻松调整的工具不仅可以进行患者特异性建模,还可以进行细胞特异性建模
补充正在进行的体外实验并提供这一重要的见解。这样的计算
模型将使研究人员能够探究不同生物物理特性对
癌症特异性细胞行为,无需对每种细胞进行昂贵的实验试验
细胞类型或从一种癌症的发现推断适用于另一种癌症。预期结果
这项研究的目的是创建一个可用的、可扩展的、可扩展的软件框架,供
更广泛的生物医学研究界研究生物物理特性对细胞的作用
运输和可能的逮捕。在这样的平台上,用户将能够介绍模型
他们感兴趣的细胞,并用我们(或业内其他人)的模型对它们进行模拟
社区)已经发展起来。能够以最少的成本无缝引入新的细胞类型
这一努力将促进研究人员之间全新的合作,并为生物学家提供
传统上不会利用计算资源来研究细胞特定的特性
现实血管几何形状的背景。这项工作将为未来的研究扩展奠定基础
这个开源模型的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda E Randles其他文献
Amanda E Randles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amanda E Randles', 18)}}的其他基金
Data-Driven Approaches to Identify Biomarkers for Guiding Coronary Artery Bifurcation Lesion Interventions from Patient-Specific Hemodynamic Models
从患者特异性血流动力学模型中识别生物标志物的数据驱动方法,用于指导冠状动脉分叉病变干预
- 批准号:
10373696 - 财政年份:2022
- 资助金额:
$ 37.07万 - 项目类别:
Dynamic models of the cardiovascular system capturing years, rather than heartbeats
心血管系统的动态模型捕捉的是岁月,而不是心跳
- 批准号:
10708040 - 财政年份:2022
- 资助金额:
$ 37.07万 - 项目类别:
Data-Driven Approaches to Identify Biomarkers for Guiding Coronary Artery Bifurcation Lesion Interventions from Patient-Specific Hemodynamic Models
从患者特异性血流动力学模型中识别生物标志物的数据驱动方法,用于指导冠状动脉分叉病变干预
- 批准号:
10681210 - 财政年份:2022
- 资助金额:
$ 37.07万 - 项目类别:
Dynamic models of the cardiovascular system capturing years, rather than heartbeats
心血管系统的动态模型捕捉的是岁月,而不是心跳
- 批准号:
10487819 - 财政年份:2022
- 资助金额:
$ 37.07万 - 项目类别:
Technology for efficient simulation of cancer cell transport
高效模拟癌细胞运输的技术
- 批准号:
10460591 - 财政年份:2020
- 资助金额:
$ 37.07万 - 项目类别:
Technology for efficient simulation of cancer cell transport
高效模拟癌细胞运输的技术
- 批准号:
10239243 - 财政年份:2020
- 资助金额:
$ 37.07万 - 项目类别:
Toward coupled multiphysics models of hemodynamics on leadership systems
领导系统血流动力学耦合多物理场模型
- 批准号:
9142377 - 财政年份:2014
- 资助金额:
$ 37.07万 - 项目类别:
Toward coupled multiphysics models of hemodynamics on leadership systems
领导系统血流动力学耦合多物理场模型
- 批准号:
8796995 - 财政年份:2014
- 资助金额:
$ 37.07万 - 项目类别:
Toward coupled multiphysics models of hemodynamics on leadership systems
领导系统血流动力学耦合多物理场模型
- 批准号:
8931819 - 财政年份:2014
- 资助金额:
$ 37.07万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
- 批准号:12361074
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
- 批准号:
10680206 - 财政年份:2023
- 资助金额:
$ 37.07万 - 项目类别:
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 37.07万 - 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10443070 - 财政年份:2023
- 资助金额:
$ 37.07万 - 项目类别:
Transcriptome and spatial analyses of tumor environment in addressing colorectal cancer racial and ethnical disparities
肿瘤环境的转录组和空间分析在解决结直肠癌种族和民族差异方面的作用
- 批准号:
10743201 - 财政年份:2023
- 资助金额:
$ 37.07万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 37.07万 - 项目类别: