Investigating Membrane Alterations as a Mechanism of Acid Tolerance in Cariogenic Bacteria
研究膜改变作为致龋细菌耐酸机制
基本信息
- 批准号:10054501
- 负责人:
- 金额:$ 13.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAcidsAddressAttentionAwardBacteriaBasic ScienceBiological AssayCaries preventionCell membraneCeruleninChronicCommunicable DiseasesCommunitiesComplexDataData SetDental EnamelDental cariesDentistryDiffusionDiseaseEnsureEnvironmentEnzymesExhibitsFatty AcidsFlow CytometryFluorescence MicroscopyFluoridesFundingGene DeletionGenomeGoalsHealthHomologous GeneIn VitroInstitutesInvestigationIsomeraseLactobacillus caseiLipidsLiquid ChromatographyMass FragmentographyMass Spectrum AnalysisMediatingMembraneMembrane FluidityMembrane LipidsMembrane ProteinsMentorsMetabolismMetagenomicsMicrobial BiofilmsMicrobiologyModelingModificationMolecularMonitorOralOral cavityOrganismPathogenesisPhasePrevalencePrevention strategyProcessProductionPropertyResearchResearch TrainingScientistStreptococcus mutansStressTherapeuticTrainingUniversitiesUnsaturated Fatty AcidsVirulenceacid stressanticariesbacterial communitybioinformatics toolbiological adaptation to stresscareer developmentcariogenic bacteriacombatcommunity settingdemineralizationfatty acid biosynthesisfluidityimprovedinhibitor/antagonistinterestlecturesmedical schoolsmetabolomicsmetatranscriptomicsmicrobialmicrobial communitymutantnovelnovel therapeutic interventionnovel therapeuticsoral bacteriaoral biofilmoral microbial communityoral microbiomepathogenpreventprogramsresponseskillstandem mass spectrometrytooth surface
项目摘要
Project Summary/Abstract
Dental caries is the most common chronic infectious disease globally and is caused by the formation of acid-
producing bacterial biofilms on the tooth surface, which demineralize and destroy the protective underlying
enamel barrier. Although the efficacy of fluoride treatments (the contemporary standard in caries prevention) is
well-documented, the current prevalence of the disease clearly illustrates that fluoride alone is insufficient to
prevent caries in many situations. Therefore, increased understanding of disease pathogenesis and exploration
of novel preventative strategies are objectives worthy of attention. Regardless of the microbial taxa involved,
bacterial acid-tolerance is an indispensable factor in caries pathogenesis. The known caries pathogen
Streptococcus mutans increases the proportion of unsaturated fatty acids (UFAs) in its plasma membrane in
response to environmental acidification—an adaptation required for acid-tolerance and virulence. Preliminary
data indicates that several other Gram-positive oral taxa, including the caries-associated species, Lactobacillus
casei, modify their membranes in a similar manner in response to environmental acidification. This proposal
addresses a number of currently unanswered questions raised by these observations. Aims 1 and 2 of the
proposed research will determine the scope of this response to acid stress across the oral microbiome, in single
taxa or in a community setting. Aim 3 of this proposal will elucidate how these UFAs are protective against acid-
mediated damage. These aims will be accomplished using bioinformatics tools, basic molecular microbiology,
an ecologically-relevant and complex in vitro oral biofilm model, and mass spectrometry/lipidomics. Successful
completion of the proposed research will answer pertinent questions regarding caries pathogenesis in a multi-
species setting and is likely to open the door to investigation of novel anti-caries therapeutics which, while
targeting acidophiles, function regardless of the presence and abundance of S. mutans. The candidate, Dr.
Jonathon Baker, has a longstanding interest in the microbiology of dental caries. Upon completion of the K99
(mentored) phase of this award, his goal is to become an independent PI at a leading research university, where
he plans to continue research on the modifications that bacteria make to their membranes to combat
environmental stresses, while leveraging acquired data to develop novel therapeutics. A funded K99/R00
proposal will allow Dr. Baker to develop skills necessary to both complete the proposed research (training in
mass spectrometry/lipidomics) and subsequently become an independent research scientist (training in didactic
lecturing, mentoring, and grantsmanship). Dr. Baker’s mentors and environment: Drs. Karen Nelson (J. Craig
Venter Institute), Anna Edlund (J. Craig Venter Institute/UC San Diego), Pieter Dorrestein (UC San Diego), Victor
Nizet (UC San Diego) and Robert Quivey, Jr. (University of Rochester School of Medicine and Dentistry) have
been carefully selected to provide high-quality, diverse scientific and collegial support, as well as state-of-the-art
facilities, to ensure successful completion of this research program and the proposed career development goals.
项目摘要/摘要
龋齿是全球最常见的慢性感染疾病,由酸的形成引起
在牙齿表面上产生细菌生物膜,该生物膜脱矿物并破坏保护性的底层
搪瓷屏障。
有据可查的疾病的当前患病率清楚地表明,仅氟化物并不是
因此,在许多情况下预防龋齿。
OFEL预防策略是值得关注的目标。
细菌酸是龋齿病原体的必不可少因素。
链球菌突变增加了IS质膜中不饱和脂肪酸(UFAS)的前景
对环境酸化的反应 - 酸性的适应性。
数据表明严重性革兰氏阳性的口服分类单元,包括龋齿相关物种,乳杆菌
Casei,以相似的方式修饰膜,以响应环境酸化。
解决了这些观察结果的许多目前未解决的问题。
提出的研究确定了这种对整个口服微生物组酸化应激的反应的范围,
分类单元或社区环境。
介导的损害将使用生物信息学工具,基本分子微生物学,
与生态相关且复杂的体外口服生物膜模型,以及质谱/脂肪组学。
支撑研究的压缩将回答相关的问题,认为天主发生
物种设置,很可能会为新颖的反卡里治疗剂投资开放
靶向嗜酸剂,无论候选链球菌的存在和丰度如何。
乔纳森·贝克(Jonathon Baker)对龋齿的微生物学很长一段时间。
(指导的)该奖项的阶段,他的目标是成为一所领先的研究大学的独立PI,是
他计划继续研究细菌对膜进行对抗的修饰
环境压力,同时利用获得的数据来开发新的疗法
提案将允许博士。
质谱/脂肪组学),随后vecome是独立的研究科学家(教学培训
贝克博士的导师和环境。
Venter Institute),Anna Edlund(J. Craig Venter Institute/UC San Diego),Pieter Dorreastein(圣地亚哥UC),Victor
Nizet(加州大学圣地亚哥加州大学)和小罗伯特·奎维(Robert Quivey)
精心选择以提供高贵,多样的科学和大学支持,以及
设施,以确保成功地压缩该研究计划和支撑职业发展目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathon Baker其他文献
Jonathon Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathon Baker', 18)}}的其他基金
Investigating Membrane Alterations as a Mechanism of Acid Tolerance in Cariogenic Bacteria
研究膜改变作为致龋细菌耐酸机制
- 批准号:
10915839 - 财政年份:2023
- 资助金额:
$ 13.09万 - 项目类别:
Investigating Membrane Alterations as a Mechanism of Acid Tolerance in Cariogenic Bacteria
研究膜改变作为致龋细菌耐酸机制
- 批准号:
10624648 - 财政年份:2022
- 资助金额:
$ 13.09万 - 项目类别:
Investigating Membrane Alterations as a Mechanism of Acid Tolerance in Cariogenic Bacteria
研究膜改变作为致龋细菌耐酸机制
- 批准号:
10174917 - 财政年份:2020
- 资助金额:
$ 13.09万 - 项目类别:
Understanding S. Mutans Pathogenesis in a Social and Ecological Setting
了解社会和生态环境中变形链球菌的发病机制
- 批准号:
9617563 - 财政年份:2018
- 资助金额:
$ 13.09万 - 项目类别:
Understanding S. mutans pathogenesis in a social and ecological setting
了解社会和生态环境中变形链球菌的发病机制
- 批准号:
9327360 - 财政年份:2017
- 资助金额:
$ 13.09万 - 项目类别:
相似国自然基金
琥珀酸代谢重编逆转碳青霉烯耐药铜绿假单胞菌耐药性的研究
- 批准号:32370191
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
植物特有蛋白FENT响应脱落酸信号调控囊泡运输的分子机制研究
- 批准号:32370329
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
钽铌酸钾晶体多效应耦合及光场调控极化序构的电光性能增益机制研究
- 批准号:62305089
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
- 批准号:82370423
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于胆汁酸介导的TGR5/GLP-1环路探究解毒通络调肝方调控肠肝轴改善T2DM-IR作用机制
- 批准号:82374380
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Structural Mechanisms of DNA Damage Sensing and Activation of the ATR, Fanconi Anemia, and ATM Checkpoints
DNA 损伤感知和 ATR、范可尼贫血和 ATM 检查点激活的结构机制
- 批准号:
10639156 - 财政年份:2023
- 资助金额:
$ 13.09万 - 项目类别:
Mitochondrial proton leak and neonatal brain injury
线粒体质子泄漏与新生儿脑损伤
- 批准号:
10724518 - 财政年份:2023
- 资助金额:
$ 13.09万 - 项目类别:
Nuclear Receptor Dysfunction Reprograms Metabolism and Cellular Proliferation in Wilson's Disease
威尔逊病中核受体功能障碍重新编程代谢和细胞增殖
- 批准号:
10516671 - 财政年份:2022
- 资助金额:
$ 13.09万 - 项目类别:
7-deazaguanines in DNA: mechanism and structure of complex genome modification
DNA 中的 7-脱氮鸟嘌呤:复杂基因组修饰的机制和结构
- 批准号:
10683108 - 财政年份:2022
- 资助金额:
$ 13.09万 - 项目类别:
7-deazaguanines in DNA: mechanism and structure of complex genome modification
DNA 中的 7-脱氮鸟嘌呤:复杂基因组修饰的机制和结构
- 批准号:
10810530 - 财政年份:2022
- 资助金额:
$ 13.09万 - 项目类别: