Multi-modal Health Information Technology Innovations for Precision Management of Glaucoma
青光眼精准管理的多模式健康信息技术创新
基本信息
- 批准号:10018290
- 负责人:
- 金额:$ 39.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-10 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdherenceAffectAfrican AmericanAgingAll of Us Research ProgramAreaAwardBig DataBlindnessBlood PressureBlood VesselsChronicChronic DiseaseClinicalClinical ResearchCounselingDataData ScienceData SetDepartment chairDevelopmentDevicesDiseaseDisease ManagementDisease ProgressionEarly DiagnosisEarly treatmentElectronic Health RecordElectronicsEnsureExhibitsEyeEye diseasesEyedropsFellowshipFoundationsFunctional disorderFutureGlaucomaHome Blood Pressure MonitoringHome environmentHuman ResourcesHypertensionImageIndividualInformaticsInstitutesInstitutionInterventionInvestigationLatinoLeadLeadershipMachine LearningMeasurementMeasuresMentorsMethodsModelingMonitorMorbidity - disease rateNerve DegenerationOperative Surgical ProceduresOphthalmologistOphthalmologyOptic NerveOutcomeParticipantPatient CarePatient Self-ReportPatient-Focused OutcomesPatientsPharmaceutical PreparationsPhysical activityPilot ProjectsPopulationPredictive AnalyticsPredictive ValuePublic HealthPublic Health InformaticsQuality of lifeResearchResourcesRiskRisk stratificationRoleSleepSymptomsTechniquesTechnologyTestingTherapeuticTimeTrack and FieldTrainingUnited States National Institutes of HealthVisionVisual FieldsWorkbasebiomedical informaticsblood pressure regulationcircadian regulationclinical phenotypeclinical practicecohortcomorbiditycostdata integrationearly onsetelectronic dataexperiencefaculty communityflexibilityhealth information technologyimprovedinnovationmedication compliancemultidisciplinarymultimodalitynew therapeutic targetnovelnovel therapeutic interventionpatient engagementpersonalized managementprecision medicinepredictive modelingprofessorprogramsracial minoritysensorsensor technologysmart watchtreatment adherencewearable device
项目摘要
PROJECT SUMMARY/ABSTRACT
Glaucoma is the world's leading cause of irreversible blindness and will affect >110 million
people by 2040. Early detection and treatment are critical, as symptoms typically do not present
until the disease is advanced. A data-driven precision medicine approach is needed to better
identify individuals who are at greatest risk of developing the disease and who are at greatest
risk of progressing quickly to vision loss. While there has been considerable progress in eye
imaging and testing to improve glaucoma monitoring, precision management of glaucoma is
incomplete without accounting for patients' co-existing systemic conditions, concurrent systemic
medications and treatments, and adherence with prescribed glaucoma treatment.
Understanding how systemic conditions, and specifically vascular conditions such as
hypertension, impact glaucoma presents growing public health importance given the increasing
co-morbidities facing aging populations. Preliminary studies have demonstrated the predictive
value of systemic data, even without ophthalmic endpoints. Similarly, measuring medication
adherence is important for guiding patient counseling and engagement and avoiding
downstream interventions such as surgeries, which carry high cost and morbidity. These factors
are important for providing a more comprehensive perspective of glaucoma management and
for improving patient outcomes, yet they are relatively understudied.
I propose applying multi-modal advancements in health information technology (IT) to address
these gaps and achieve the following specific aims: (1) Develop machine learning-based
predictive models classifying patients at risk for glaucoma progression using systemic electronic
health record (EHR) data from a diverse nationwide patient cohort; (2) evaluate how integrating
blood pressure (BP) data from novel smartwatch-based home BP monitors enhance predictive
models for risk stratification in glaucoma, and (3) measure glaucoma medication adherence
using innovative flexible electronic sensors to validate their use for future interventions aimed at
improving adherence and clinical outcomes in glaucoma. These studies would leverage state-
of-the-art methods in big-data predictive modeling as well as cutting-edge advancements in
sensor technologies. This multi-faceted approach will build a foundation for a health IT
framework geared toward improving risk stratification and generating novel therapeutic targets
for glaucoma patients.
项目摘要/摘要
青光眼是世界上不可逆失明的主要原因,将影响> 1.1亿
到2040年,人们。早期发现和治疗至关重要,因为症状通常不存在
直到疾病疾病。需要采用数据驱动的精确医学方法来改善
识别患有最大风险患疾病并且最大风险的人
迅速发展视力丧失的风险。虽然眼睛取得了很大进展
成像和测试以改善青光眼监测,青光眼的精确管理是
不完整的情况下,不对患者共存的全身状况,同时进行全身状况
药物和治疗,并遵守处方青光眼治疗。
了解系统状况,特别是血管状况(例如
高血压,影响青光眼呈现出越来越重要的公共健康重要性
面临老龄化人口的合并症。初步研究证明了预测性
即使没有眼科端点,系统数据的价值也是如此。同样,测量药物
依从性对于指导患者咨询和参与很重要,避免
下游干预措施,例如手术,这些干预措施具有高成本和发病率。这些因素
对于提供青光眼管理和更全面的观点很重要
为了改善患者的预后,他们相对研究了。
我建议在健康信息技术(IT)中应用多模式的进步来解决
这些差距并达到以下特定目的:(1)开发基于机器学习的
使用全身电子的预测模型将有青光眼进展的患者分类
来自全国各地患者队列的健康记录(EHR)数据; (2)评估如何整合
来自新型基于智能手表的家庭BP监视器的血压(BP)数据增强了预测
青光眼风险分层的模型,(3)测量青光眼药物依从性
使用创新的灵活电子传感器来验证其用于未来干预措施的用途
改善青光眼的依从性和临床结果。这些研究将利用国家 -
大数据预测建模中的艺术方法以及最先进的进步
传感器技术。这种多方面的方法将为健康建立基础
旨在改善风险分层和产生新型治疗目标的框架
对于青光眼患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sally Liu Baxter其他文献
Sally Liu Baxter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sally Liu Baxter', 18)}}的其他基金
PAGE-G: Precision Approach combining Genes and Environment in Glaucoma
PAGE-G:青光眼基因与环境相结合的精准方法
- 批准号:
10797646 - 财政年份:2023
- 资助金额:
$ 39.4万 - 项目类别:
Bridge2AI: Salutogenesis Data Generation Project
Bridge2AI:Salutogenesis 数据生成项目
- 批准号:
10858583 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Bridge2AI: Salutogenesis Data Generation Project
Bridge2AI:Salutogenesis 数据生成项目
- 批准号:
10471118 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Short-Term Research training In Vision and Eye health (STRIVE)
视觉和眼睛健康短期研究培训 (STRIVE)
- 批准号:
10615857 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Multimodal Artificial Intelligence to Predict Glaucomatous Progression and Surgical Intervention
多模态人工智能预测青光眼进展和手术干预
- 批准号:
10677890 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Bridge2AI: Salutogenesis Data Generation Project
Bridge2AI:Salutogenesis 数据生成项目
- 批准号:
10885481 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Short-Term Research training In Vision and Eye health (STRIVE)
视觉和眼睛健康短期研究培训 (STRIVE)
- 批准号:
10409942 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Multimodal Artificial Intelligence to Predict Glaucomatous Progression and Surgical Intervention
多模态人工智能预测青光眼进展和手术干预
- 批准号:
10504041 - 财政年份:2022
- 资助金额:
$ 39.4万 - 项目类别:
Multi-modal Health Information Technology Innovations for Precision Management of Glaucoma
青光眼精准管理的多模式健康信息技术创新
- 批准号:
10260459 - 财政年份:2020
- 资助金额:
$ 39.4万 - 项目类别:
Multi-modal Health Information Technology Innovations for Precision Management of Glaucoma
青光眼精准管理的多模式健康信息技术创新
- 批准号:
10437231 - 财政年份:2020
- 资助金额:
$ 39.4万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Preventing Firearm Suicide Deaths Among Black/African American Adults
防止黑人/非裔美国成年人因枪支自杀死亡
- 批准号:
10811498 - 财政年份:2023
- 资助金额:
$ 39.4万 - 项目类别:
Comparative Risk of Oral Complications Associated with Medications for Opioid Use Disorder: A Mixed-Methods Approach
与阿片类药物使用障碍药物相关的口腔并发症的风险比较:混合方法
- 批准号:
10765049 - 财政年份:2023
- 资助金额:
$ 39.4万 - 项目类别:
Screen Smart: Using Digital Health to Improve HIV Screening and Prevention for Adolescents in the Emergency Department
智能屏幕:利用数字健康改善急诊科青少年的艾滋病毒筛查和预防
- 批准号:
10711679 - 财政年份:2023
- 资助金额:
$ 39.4万 - 项目类别: