The role of autophagy in the escape from replicative crisis and tumorigenesis
自噬在逃避复制危机和肿瘤发生中的作用
基本信息
- 批准号:10040400
- 负责人:
- 金额:$ 16.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AutophagocytosisAwardBindingBioinformaticsBiological MarkersBypassCDKN2A geneCRISPR screenCRISPR/Cas technologyCancer BiologyCell AgingCell Cycle ArrestCell Cycle CheckpointCell DeathCellsComputer AnalysisDNADataDefectDevelopmentDouble MinutesEducational process of instructingExcisionFluorescent in Situ HybridizationFrequenciesFunctional disorderGenesGenome StabilityGenomicsGrantHumanIncidenceIndividualKnock-outKnockout MiceKnowledgeLaboratoriesMalignant - descriptorMalignant NeoplasmsMass Spectrum AnalysisMeasuresMembraneMentorsMentorshipMethodsMolecularMonitorMouse StrainsMusNeoplastic Cell TransformationOncogenicPathway interactionsPhasePlayPrecipitationPredispositionPremalignant CellPreventionProteinsProteomicsResearchResearch Project GrantsRiskRoleSignal PathwayStimulator of Interferon GenesTP53 geneTechnologyTelomere ShorteningTestingTherapeuticTissuesTrainingTraining ActivityTransgenic MiceTumor Suppressor ProteinsWorkWritingbasecancer therapycarcinogenesischromothripsisdesignepigenomicsexpectationgenome sequencinggenome-widein vivoinsightlive cell imagingmouse modelnext generation sequencingnovelreceptorrecruitresponserestraintsenescenceskillssuccesstelomeretranscriptomicstumortumorigenesiswhole genome
项目摘要
Project Summary / Abstract
Tumorigenesis requires cells to bypass or escape two discrete and distinctive anti-proliferative barriers:
replicative senescence and crisis. Senescence is a permanent cell cycle arrest, activated as a primary response
to telomere deprotection and involves stimulation of the tumor suppressor pathways p53-p21WAF1 and/or p16INK4A-
Rb. Disruption of cell-cycle checkpoints renders cells capable of bypassing senescence and continuing
proliferation, while telomeres shorten further. Eventually such cells initiate a terminal response called replicative
crisis, during which critically short telomeres become subject to end-to-end fusions, resulting in massive cell
death. On rare occasion, a small group of cells will emerge spontaneously from crisis and evolve towards
malignancy, yet the mechanisms underlying cell death in crisis and crisis escape are not defined. Dr. Joe Nassour
has recently discovered an unrecognized function for macroautophagy (hereafter autophagy) in the elimination
of cells during crisis. Autophagy is therefore an essential component of the crisis response required for the
removal of cells at risk for malignant transformation. This suggests that autophagy defects can be the molecular
basis for tumorigenesis.
In his Pathway to Independence Award (K99/R00) proposal, Dr. Nassour, together with his Mentor Dr. Jan
Karlseder, and his Co-Mentors Dr. Reuben Shaw, Dr. Martin Hetzer, and Dr. Peter Adams, designed a dedicated
training plan and proposed a research project that sets out to dissect the molecular basis of mammalian
autophagy and its potential therapeutic role in the earliest stages of human cancer. In particular, Dr. Nassour will
focus on deciphering the mechanism of autophagy-dependent cell death in crisis (Aim 1), elucidating the
interplay between autophagy and genome stability (Aim 2), and evaluating the role of autophagy in neoplastic
transformation through crisis escape (Aim 3). The in vivo relevance of Aim 3 will be examined by employing
knockout and transgenic mouse models susceptible to telomere dysfunction-driven carcinogenesis. The
occurrence of cellular crisis in tissues and the impact of autophagy on tumor incidence will be examined. This
research will provide new insights into the function of autophagy in cancer biology, and should provide a rationale
for developing autophagy modulation approaches to ameliorate the efficacy of cancer therapy.
Dr. Nassour’s training plan will provide all the necessary professional development to direct an independent
laboratory using next-generation sequencing (NGS)-based ‘omics’ approaches and transgenic mouse models to
define the mechanisms and function of autophagy in cancer. Training modules in this award include:
Computational analysis and bioinformatics for NGS data, methods for handling and restraint in the mouse,
transgenic mouse technology, and mentorship skills such as teaching and grant writing; which will all be
necessary for the success following the transition to independence.
项目概要/摘要
肿瘤发生需要细胞绕过或逃避两个离散且独特的抗增殖屏障:
复制性衰老和危机是一种永久性的细胞周期停滞,作为主要反应被激活。
端粒去保护并涉及肿瘤抑制途径 p53-p21WAF1 和/或 p16INK4A- 的刺激
Rb. 细胞周期检查点的破坏使细胞能够绕过衰老并继续衰老
增殖,而端粒进一步缩短,最终这些细胞启动称为复制的终端反应。
危机,在此期间极短的端粒发生端到端融合,导致大量细胞
在极少数情况下,一小群细胞会自发地摆脱危机并进化到死亡。
恶性肿瘤,但危机中细胞死亡和危机逃避的机制尚未明确。
最近发现了宏自噬(以下简称自噬)在消除过程中的一个未被识别的功能
因此,细胞自噬是危机应对的重要组成部分。
去除有恶性转化风险的细胞,这表明自噬缺陷可能是分子机制。
肿瘤发生的基础。
Nassour 博士和他的导师 Jan 博士在他的独立之路奖 (K99/R00) 提案中
Karlseder 和他的合作导师 Reuben Shaw 博士、Martin Hetzer 博士和 Peter Adams 博士设计了一个专门的
培训计划并提出了一个研究项目,旨在剖析哺乳动物的分子基础
Nassour 博士特别介绍了自噬及其在人类癌症早期阶段的潜在治疗作用。
重点破译危机中自噬依赖性细胞死亡的机制(目标1),阐明
自噬与基因组稳定性之间的相互作用(目标 2),并评估自噬在肿瘤中的作用
通过危机逃避进行转型(目标 3) 将通过采用来检验目标 3 的体内相关性。
敲除和转基因小鼠模型易受端粒功能障碍驱动的致癌作用。
将检查组织中细胞危机的发生以及自噬对肿瘤发生率的影响。
研究将为自噬在癌症生物学中的功能提供新的见解,并应提供一个基本原理
开发自噬调节方法以提高癌症治疗的功效。
纳苏尔博士的培训计划将提供所有必要的专业发展,以指导独立的
实验室使用基于下一代测序(NGS)的“组学”方法和转基因小鼠模型来
定义癌症中自噬的机制和功能。该奖项的培训模块包括:
NGS 数据的计算分析和生物信息学、小鼠的处理和约束方法、
转基因小鼠技术以及教学和资助写作等指导技能;
独立过渡后取得成功所必需的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joe Nassour其他文献
Joe Nassour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joe Nassour', 18)}}的其他基金
The role of autophagy in the escape from replicative crisis and tumorigenesis
自噬在逃避复制危机和肿瘤发生中的作用
- 批准号:
10200720 - 财政年份:2020
- 资助金额:
$ 16.31万 - 项目类别:
The role of autophagy in the escape from replicative crisis and tumorigenesis
自噬在逃避复制危机和肿瘤发生中的作用
- 批准号:
10843405 - 财政年份:2020
- 资助金额:
$ 16.31万 - 项目类别:
相似国自然基金
生态补奖背景下草原牧户实现自主性减畜的机制、路径和政策研究
- 批准号:72374130
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
草原生态补奖政策对牧户兼业行为的影响机理研究——以内蒙古为例
- 批准号:72363025
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
草原生态补奖政策激励-约束下牧民生产行为决策机制及生态效应
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:
华罗庚数学奖获得者座谈会及数学普及活动
- 批准号:11926407
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Mechanistic Understanding of Hypoxia-Induced Peroxisome loss: Implications for Heart Failure
缺氧引起的过氧化物酶体损失的机制理解:对心力衰竭的影响
- 批准号:
10840053 - 财政年份:2023
- 资助金额:
$ 16.31万 - 项目类别:
Mechanisms of reticulophagy and ER stress mitigation in epidermis
表皮网状吞噬和内质网应激缓解机制
- 批准号:
10726427 - 财政年份:2023
- 资助金额:
$ 16.31万 - 项目类别:
BCCMA: Translational research to improve the care of advanced bladder cancer
BCCMA:改善晚期膀胱癌护理的转化研究
- 批准号:
10588500 - 财政年份:2023
- 资助金额:
$ 16.31万 - 项目类别:
Mechanistic Understanding of Hypoxia-Induced Peroxisome loss: Implications for Heart Failure
缺氧引起的过氧化物酶体损失的机制理解:对心力衰竭的影响
- 批准号:
10427935 - 财政年份:2022
- 资助金额:
$ 16.31万 - 项目类别: