Quantum dot probes for electron microscopy
用于电子显微镜的量子点探针
基本信息
- 批准号:10043302
- 负责人:
- 金额:$ 44.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAntibodiesAntibody Binding SitesAntigensArchitectureAttentionAxonBindingBinding SitesBlocking AntibodiesBrainBrain MappingCaliberCellsCellular StructuresCollectionComplexCrystallizationDendritesDendritic SpinesDepositionDetectionDevelopmentElectron MicroscopyEnzymesFailureFluorescenceFluorescence MicroscopyFluorescent Antibody TechniqueGoalsGoldGold ColloidImageImmunoelectron MicroscopyImmunofluorescence ImmunologicIndividualLabelLifeLinkLiteratureMapsMethodsMolecularNeurobiologyNeuronsNeurosciencesParaffin EmbeddingPathologyPerformancePeriodicityPeroxidasesPlant ResinsProceduresProcessProteinsProtocols documentationPublishingQuantum DotsReagentReporterResolutionSample SizeSamplingSemiconductorsShapesSignal TransductionStainsStructureSynapsesSystemTechniquesThinnessTimeTissuesTransgenic Organismsbasebrain cellbrain tissuedesignexperimental studyfluorescence microscopefluorophoregenetic manipulationhigh resolution imagingimaging approachimaging modalityimprovedinnovationmetal complexmolecular imagingnanocrystalnanometernanometer resolutionneglectnervous system disorderparticlesample fixationsingle moleculestoichiometrytool
项目摘要
Project Summary/Abstract
The lack of comprehensive maps of brain architecture from molecules to circuits is a critical barrier to
progress in neuroscience, and better, more routine methods for accurately localizing molecules at the
subcellular level are needed. Brain tissue presents a twofold challenge for molecular mapping: in addition to
the obvious need for high-resolution imaging, accurate localization of molecules also requires a means of
visualizing the surrounding cellular and tissue structure to identify not only which subcellular compartment
contains a given molecule, but which cell. Super-resolution fluorescence microscopy has achieved single-
molecule resolution, but reveals only probes, not tissue structure. Electron microscopy (EM) readily reveals
comprehensive tissue structure at sub-nanometer resolution. Methods for molecular imaging at the EM level,
however, remain inefficient and are often unreliable. Newly developed transgenic approaches can facilitate
localization of specific targets by EM, but these require genetic manipulation, offer very limited multiplexing,
and do not reveal endogenous molecules. Postembedding immuno-EM, in which antibody labeling is
performed directly on EM sections, is a much more efficient and versatile approach, but is technically
challenging to the point that it is largely avoided in neurobiology. A crucial unique feature of postembedding
EM labeling, in contrast to the routine, widely used methods for immunolabeling of fixed tissue, is the use of
gold particles for antibody detection. The premise of this proposal is that gold probes are an underappreciated
cause of failure in postembedding labeling, based on the observation that EM sections are amenable to
labeling with fluorescent antibody probes using simple, routine procedures. In contrast to popular fluorescent
antibody probes, gold probes suffer from unfavorable stoichiometry, stearic hinderance, and instability of the
gold-antibody complexes. The central aim of this project is to develop reagents for antibody detection on EM
sections that circumvent these problems. Quantum dots, which are semiconductor nanocrystals that are
visible by EM, are an excellent alternative to gold as they are simple to synthesize in a variety of sizes, shapes,
and elemental compositions, which facilitates both probe optimization and multiplexed labeling. To avoid
reliance on bulky, unstable protein-metal complexes that limit both sensitivity and signal amplification, a
catalyzed reporter deposition (CARD) approach will be used. CARD employs antibody-linked peroxidase
enzymes to catalyze covalent attachment of probe molecules to proteins at the antibody binding site.
Functionalizing quantum dots for use as CARD substrates uncouples the antibody binding step from detection,
so that the relatively bulky EM probe does not interfere with sensitivity, and enzyme-based probe deposition
allows amplification to proceed across time without the limitation of binding-site saturation. This approach is
innovative in that it does not simply replace one label for another, but instead addresses multiple known
causes of poor performance in the existing probes.
项目摘要/摘要
从分子到电路的大脑结构缺乏全面的地图,这是一个关键的障碍
神经科学的进展以及更好,更多的常规方法,以精确定位分子在
需要亚细胞水平。脑组织对分子映射提出了双重挑战:除了
对高分辨率成像的明显需求,分子的准确定位也需要一种手段
可视化周围的细胞和组织结构,不仅识别哪个亚细胞隔室
包含一个给定的分子,但哪个细胞。超分辨率荧光显微镜已达到单次
分子分辨率,但仅显示探针,而不是组织结构。电子显微镜(EM)很容易揭示
亚纳米分辨率下的综合组织结构。 EM水平分子成像的方法,
但是,保持效率低下,通常是不可靠的。新开发的转基因方法可以促进
EM对特定目标的定位,但是这些需要遗传操作,提供非常有限的多路复用,
并且不揭示内源分子。后置免疫EM,其中抗体标记为
直接在EM部分执行,是一种更有效,更通用的方法,但从技术上讲是
具有挑战性的是,神经生物学在很大程度上避免了它。邮政的关键独特功能
与常规的固定组织免疫标记的方法相比,EM标记是使用
用于抗体检测的金颗粒。该提议的前提是黄金探针是一个不足的
基于EM部分可调的观察结果,导致后置标记的原因
使用简单的常规程序用荧光抗体探针进行标记。与流行荧光相反
抗体探针,黄金探针患有不利的化学计量,降低性障碍和不稳定性
金抗体复合物。该项目的核心目的是开发用于EM的抗体检测的试剂
绕过这些问题的部分。量子点,是半导体纳米晶体
EM可见,是黄金的绝佳替代品,因为它们易于以各种尺寸,形状,
和元素组成,既有助于探针优化和多重标记。避免
依赖庞大,不稳定的蛋白质金属复合物,限制了灵敏度和信号扩增,A
将使用催化的记者沉积(卡)方法。卡采用抗体连接的过氧化物酶
酶以催化探针分子在抗体结合位点上的共价附着。
用作卡底物的量子点功能化量子点未取消检测的抗体结合步骤,
因此,相对庞大的EM探针不会干扰灵敏度,并且基于酶的探针沉积
允许扩增在时间上进行,而不会限制结合位点饱和。这种方法是
创新性不仅仅是将一个标签替换为另一个标签,而是解决多个已知的标签
现有探针的性能不佳。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Click Chemistry for Visualization of Newly Synthesized RNA and Antibody Labeling on Ultrathin Tissue Sections.
单击 Chemistry 可在超薄组织切片上可视化新合成的 RNA 和抗体标记。
- DOI:10.1093/micmic/ozad067.552
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Pérez-Garza,Janeth;Orea,Jairo;Ostroff,Linnaea
- 通讯作者:Ostroff,Linnaea
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LINNAEA E OSTROFF其他文献
LINNAEA E OSTROFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LINNAEA E OSTROFF', 18)}}的其他基金
A versatile approach for highly multiplexed, high-resolution imaging of endogenous molecules
一种对内源性分子进行高度多重、高分辨率成像的通用方法
- 批准号:
10505946 - 财政年份:2022
- 资助金额:
$ 44.28万 - 项目类别:
New strategies for molecular cell-type labeling in volume electron microscopy
体积电子显微镜中分子细胞类型标记的新策略
- 批准号:
10413454 - 财政年份:2022
- 资助金额:
$ 44.28万 - 项目类别:
Methods for serially multiplexed labeling in EM reconstructions of brain tissue
脑组织电镜重建中连续多重标记的方法
- 批准号:
9892040 - 财政年份:2019
- 资助金额:
$ 44.28万 - 项目类别:
Development of genetically encoded neural tracers for electron microscopy
用于电子显微镜的基因编码神经示踪剂的开发
- 批准号:
8176619 - 财政年份:2011
- 资助金额:
$ 44.28万 - 项目类别:
Development of genetically encoded neural tracers for electron microscopy
用于电子显微镜的基因编码神经示踪剂的开发
- 批准号:
8327806 - 财政年份:2011
- 资助金额:
$ 44.28万 - 项目类别:
Synaptic tagging in the lateral amygdala fear conditioning circuit
外侧杏仁核恐惧调节回路中的突触标记
- 批准号:
7927173 - 财政年份:2008
- 资助金额:
$ 44.28万 - 项目类别:
Synaptic tagging in the lateral amygdala fear conditioning circuit
外侧杏仁核恐惧调节回路中的突触标记
- 批准号:
7677846 - 财政年份:2008
- 资助金额:
$ 44.28万 - 项目类别:
Synaptic tagging in the lateral amygdala fear conditioning circuit
外侧杏仁核恐惧调节回路中的突触标记
- 批准号:
7482804 - 财政年份:2008
- 资助金额:
$ 44.28万 - 项目类别:
相似国自然基金
人和小鼠中新冠病毒RBD的免疫原性表位及其互作抗体的表征和结构组学规律的比较研究
- 批准号:32371262
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于吡啶盐的可裂解抗体-药物偶联方法研究
- 批准号:22307081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TFAM条件性敲除重塑树突状细胞免疫代谢增强PD-1抗体抗肿瘤作用的机制研究
- 批准号:82303723
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
广谱中和埃博拉病毒的纳米抗体研发以及中和机制研究
- 批准号:82302522
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新细胞因子FAM19A4联合CTLA-4抗体在肿瘤治疗的功能和机制研究
- 批准号:32370967
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Development of antibody drug conjugates as pan-filo antivirals
开发作为泛型抗病毒药物的抗体药物偶联物
- 批准号:
10759731 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别:
Potent broadly neutralizing antibody development against the HIV-1 fusion peptide epitope
针对 HIV-1 融合肽表位的强效广泛中和抗体的开发
- 批准号:
10838825 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别:
The evolutionary landscape of HIV broadly neutralizing antibody development
HIV广泛中和抗体发展的进化格局
- 批准号:
10726119 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别:
Multidimensional antibody engineering to enhance the potency and breadth of a betacoronavirus medical countermeasure
多维抗体工程可增强β冠状病毒医学对策的效力和广度
- 批准号:
10699866 - 财政年份:2023
- 资助金额:
$ 44.28万 - 项目类别: