Mechanisms of disruption of axon transport of autophagic vesicles and lysosomes in C9orf72 ALS
C9orf72 ALS 中自噬囊泡和溶酶体轴突运输破坏的机制
基本信息
- 批准号:10040769
- 负责人:
- 金额:$ 19.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:ALS patientsAddressAffectAmyotrophic Lateral SclerosisAnabolismAutophagocytosisAutophagosomeAxonAxonal TransportBackBiochemicalBiogenesisBiologyC9ORF72CellsCytoplasmDataDefectDevelopmentDiseaseDisease modelDistalDrosophila genusEventFoundationsFractionationFrontotemporal DementiaFunctional disorderGenesGeneticGoalsHumanImageImpairmentIn VitroInheritedLabelLaboratoriesLeadLinkLysosomesMembraneMethodsMicrotubulesModelingMotorMotor NeuronsMutationNerve DegenerationNeurodegenerative DisordersNeuronsNuclear PoreNuclear Pore ComplexOrganellesPathogenesisPathogenicityPathway interactionsPatientsPharmacologyPhenotypePhosphotransferasesPost-Translational Protein ProcessingProcessProteinsRNARegulationTestingTimeTrainingTubulinVesicleWorkcareercareer developmentexperimental studyflygenetic manipulationimaging modalityimprovedin vivoinduced pluripotent stem cellinsightlive cell imagingmotor neuron degenerationneuronal cell bodynucleocytoplasmic transportoverexpressionprotein aggregationproteostasisretrograde transportstress granuletherapeutic evaluationtherapeutic targettooltranscription factortreatment strategy
项目摘要
PROJECT SUMMARY
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease characterized by dying-back
degeneration of upper and lower motor neurons. The most common known cause of familial and sporadic
forms of ALS as well as frontotemporal dementia (FTD) is the GGGGCC hexanucleotide repeat expansion
(HRE) in C9ORF72 (C9). Our laboratory and others recently discovered that impaired nucleocytoplasmic
transport (NCT) is a fundamental and early pathogenic event in C9-ALS that requires stress granule formation.
However, downstream effects of impaired NCT are unclear. Recent studies have shown that autophagosome
biosynthesis occurs in the distal axon followed by retrograde transport of autophagic vesicles (AVs) to the
soma as they mature, providing a potential link between axon transport (AT) and autophagy, two mechanisms
well known to be involved early in ALS pathophysiology. In Drosophila expressing 30 GGGGCC repeats
(30R), we have found an accumulation of p62 and lysosomes, suggesting that impaired regulation of
autophagy and lysosomes may be a pathogenic mechanism for C9-ALS. Further, we have found preliminary
evidence of a reduction in retrograde autophagosome transport in 30R Drosophila. Consistent with this,
preliminary experiments in iPS motor neurons (iPSNs) derived from patients with C9-ALS showed an
accumulation of lysosomes in axons. Specific Aim 1 will further characterize axon transport of multiple cargo in
30R Drosophila and C9 iPSNs using live cell imaging methods. Specific Aim 2 will examine the interrelation
between axon transport, autophagy and lysosomal function and determine if rescuing autophagy can rescue
axon transport deficits of AVs. Finally, preliminary fly data shows that Mitf/TFEB, a transcription factor
regulating autophagy and lysosomes, is mislocalized to the cytoplasm in 30R Drosophila, indicating that
impaired nucleocytoplasmic transport may lead to impaired autophagy and lysosome regulation. Specific Aim
3 will address the hypothesis that impaired nucleocytoplasmic transport is upstream of impaired axon transport
defects and disruptions in autophagy. By using powerful parallel approaches in Drosophila, allowing precise
genetic manipulation of AT and autophagy, and iPSNs derived from patients with C9-ALS, allowing
experimental manipulation of human cells with the disease, this proposal will investigate detailed mechanistic
pathways of axon transport and regulation of autophagy and lysosomes in C9-ALS. Results from these studies
will not only aid our understanding of the pathogenesis and treatment strategies of ALS, but they will also
further our understanding of the axonal biology of autophagy, important in all neurodegenerative diseases.
项目概要
肌萎缩侧索硬化症 (ALS) 是一种毁灭性的神经退行性疾病,其特征是死亡
上、下运动神经元变性。家族性和散发性最常见的已知原因
ALS 和额颞叶痴呆 (FTD) 的一种形式是 GGGGCC 六核苷酸重复扩增
(HRE) 在 C9ORF72 (C9) 中。我们的实验室和其他人最近发现核细胞质受损
转运 (NCT) 是 C9-ALS 中的一个基本的早期致病事件,需要应激颗粒的形成。
然而,NCT 受损的下游影响尚不清楚。最近的研究表明,自噬体
生物合成发生在远端轴突,然后将自噬囊泡 (AV) 逆行转运至
体细胞成熟时,提供轴突运输(AT)和自噬这两种机制之间的潜在联系
众所周知,其早期参与了 ALS 病理生理学。在果蝇中表达 30 个 GGGGCC 重复序列
(30R),我们发现 p62 和溶酶体的积累,表明 p62 和溶酶体的调节受损
自噬和溶酶体可能是 C9-ALS 的致病机制。此外,我们初步发现
30R 果蝇逆行自噬体转运减少的证据。与此相一致的是,
对源自 C9-ALS 患者的 iPS 运动神经元 (iPSN) 进行的初步实验表明,
溶酶体在轴突中积累。具体目标 1 将进一步表征多种货物的轴突运输
使用活细胞成像方法的 30R 果蝇和 C9 iPSN。具体目标 2 将检查相互关系
轴突运输、自噬和溶酶体功能之间的关系,并确定拯救自噬是否可以拯救
AV 的轴突运输缺陷。最后,初步的飞行数据显示 Mitf/TFEB(一种转录因子)
调节自噬和溶酶体,在 30R 果蝇中错误定位到细胞质,表明
核质运输受损可能导致自噬和溶酶体调节受损。具体目标
3 将解决以下假设:受损的核细胞质运输是受损的轴突运输的上游
自噬的缺陷和破坏。通过在果蝇中使用强大的并行方法,可以实现精确的
对 AT 和自噬以及源自 C9-ALS 患者的 iPSN 进行基因操作,允许
对患有这种疾病的人类细胞进行实验操作,该提案将研究详细的机制
C9-ALS 中轴突运输以及自噬和溶酶体调节的途径。这些研究的结果
不仅有助于我们了解 ALS 的发病机制和治疗策略,而且还将帮助我们了解 ALS 的发病机制和治疗策略。
进一步加深我们对自噬轴突生物学的理解,自噬在所有神经退行性疾病中都很重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Hatch Berth其他文献
Sarah Hatch Berth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Hatch Berth', 18)}}的其他基金
Mechanisms of disruption of axon transport of autophagic vesicles and lysosomes in C9orf72 ALS
C9orf72 ALS 中自噬囊泡和溶酶体轴突运输破坏的机制
- 批准号:
10647723 - 财政年份:2020
- 资助金额:
$ 19.93万 - 项目类别:
Mechanisms of disruption of axon transport of autophagic vesicles and lysosomes in C9orf72 ALS
C9orf72 ALS 中自噬囊泡和溶酶体轴突运输破坏的机制
- 批准号:
10187672 - 财政年份:2020
- 资助金额:
$ 19.93万 - 项目类别:
Mechanisms of disruption of axon transport of autophagic vesicles and lysosomes in C9orf72 ALS
C9orf72 ALS 中自噬囊泡和溶酶体轴突运输破坏的机制
- 批准号:
10435445 - 财政年份:2020
- 资助金额:
$ 19.93万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
- 批准号:
10776994 - 财政年份:2023
- 资助金额:
$ 19.93万 - 项目类别:
Intermediate-sized Expanded Access Protocol for CNM-Au8 in Amyotrophic Lateral Sclerosis (ALS).
CNM-Au8 在肌萎缩侧索硬化症 (ALS) 中的中等规模扩展访问协议。
- 批准号:
10835565 - 财政年份:2023
- 资助金额:
$ 19.93万 - 项目类别:
Development of a SYF2 antisense oligonucleotide treatment for ALS and FTD
开发治疗 ALS 和 FTD 的 SYF2 反义寡核苷酸
- 批准号:
10547625 - 财政年份:2023
- 资助金额:
$ 19.93万 - 项目类别:
Investigating the Role of MS4As in Amyotrophic Lateral Sclerosis
研究 MS4As 在肌萎缩侧索硬化症中的作用
- 批准号:
10751695 - 财政年份:2023
- 资助金额:
$ 19.93万 - 项目类别: