Validating of Machine Learning-Based EEG Treatment Biomarkers in Depression
验证基于机器学习的脑电图治疗抑郁症生物标志物
基本信息
- 批准号:10009501
- 负责人:
- 金额:$ 98.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAntidepressive AgentsAwardBase of the BrainBiologicalBiological FactorsBiological MarkersCaringClinicClinicalClinical TreatmentComputer ModelsComputer softwareDataData AnalysesData SetDevelopmentElectroencephalographyEnrollmentExtravasationFeedbackFundingInterventionLaboratoriesLeadMachine LearningMapsMedical DeviceMental DepressionMental disordersMethodsNeurosciencesOutcomePathway interactionsPatient TriagePatientsPatternPerformancePharmaceutical PreparationsPharmacologyPhasePlacebosProceduresPsychiatryRegulationResearchResistanceResistance profileScientistSeedsSignal TransductionSmall Business Innovation Research GrantSourceSupervisionSystemTestingTrainingTraining ProgramsTreatment outcomeUnited States National Institutes of HealthWorkbasebiological heterogeneitycandidate markerclinical carecohortcommercializationcomorbiditycomputerized data processingcostdata acquisitiondepressed patientindividual patientmeetingsnovelpatient stratificationpatient subsetsprogramsprospectiverepetitive transcranial magnetic stimulationresponsesoftware developmentsupervised learningtherapy resistanttooltreatment optimizationtreatment responsetreatment-resistant depressionunsupervised learning
项目摘要
SUMMARY/ABSTRACT
The overarching aim of Alto Neuroscience is to advance brain-based biomarkers for psychiatric disorders in
order to both optimize treatment pathways and drive the development of novel pharmacological and non-
pharmacological interventions. Alto does this by developing and applying sophisticated machine learning
computational models to electroencephalography (EEG) data collected at scale in real-world clinical treatment
contexts. Specifically, in this direct-to-phase II SBIR proposal we will refine, and then independently validate,
two EEG-based candidate biomarkers we have identified for stratifying patients with depression in a manner that
both factors biological heterogeneity and informs treatment response. One of our biomarkers was derived in a
“top-down” (i.e. supervised) manner by trying to directly predict treatment outcome, while the other biomarker
presents a complimentary “bottom-up” (i.e. unsupervised) approach that begins by first identifying the most
biologically homogeneous subset of patients and then testing the treatment relevance of the subtyping. Together,
these findings represent very robust individual patient-level treatment-relevant EEG biomarkers, and in both
cases, help define a critically-important objective approach to prospectively identifying and treating treatment-
resistant depressed patients. A successful outcome of the proposed work would yield the first FDA-cleared
biomarkers for stratifying psychiatric conditions. It would also provide a basis for targeted development of
pharmacological and non-pharmacological interventions based on the EEG biomarkers. Both outcomes hold
substantial commercial value and exciting potential for transforming psychiatry.
摘要/摘要
中音神经科学的总体目的是推进基于大脑的生物标志物的精神疾病
为了优化治疗途径并推动新型药理和非 - 非 -
药理干预措施。 Alto通过开发和应用复杂的机器学习来做到这一点
脑电图(EEG)数据的计算模型在现实世界中的临床处理中收集的数据
contextss.ceppers.cepplys,在这个直接到基础的II SBIR提案中,我们将完善,然后独立验证,
我们已经确定了两个基于脑电图的候选生物标志物,用于以某种方式对抑郁症进行分层
这两种因素生物异质性并为治疗反应提供了信息。我们的生物标志物之一是在一个
通过试图直接预测治疗结果,而其他生物标志物,“自上而下”(即监督)方式
提出一种免费的“自下而上”(即无监督的)方法,首先要识别最多
患者的生物学均质子集,然后测试亚型的治疗相关性。一起,
这些发现代表了非常强大的个体患者级治疗与脑电图生物标志物,并且在这两种情况下
案例,有助于定义一种至关重要的客观方法,用于识别和治疗治疗
抵抗抑郁症患者。拟议工作的成功结果将产生第一个FDA清除
分层精神病疾病的生物标志物。它还将为有针对性发展的基础
基于脑电图生物标志物的药理和非药理学干预措施。两个结果都保持
巨大的商业价值和令人兴奋的转变精神病学潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amit Etkin其他文献
Amit Etkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amit Etkin', 18)}}的其他基金
Validating of Machine Learning-Based EEG Treatment Biomarkers in Depression
验证基于机器学习的脑电图治疗抑郁症生物标志物
- 批准号:
10116492 - 财政年份:2020
- 资助金额:
$ 98.81万 - 项目类别:
Validating of Machine Learning-Based EEG Treatment Biomarkers in Depression
验证基于机器学习的脑电图治疗抑郁症生物标志物
- 批准号:
10366060 - 财政年份:2020
- 资助金额:
$ 98.81万 - 项目类别:
Assessing an electroencephalography (EEG) biomarker of response to transcranial magnetic stimulation for major depression
评估重度抑郁症对经颅磁刺激反应的脑电图 (EEG) 生物标志物
- 批准号:
9933192 - 财政年份:2020
- 资助金额:
$ 98.81万 - 项目类别:
A "Circuits-First" Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
10214488 - 财政年份:2019
- 资助金额:
$ 98.81万 - 项目类别:
A "Circuits-First" Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
10000142 - 财政年份:2019
- 资助金额:
$ 98.81万 - 项目类别:
A "Circuits-First" Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
10019435 - 财政年份:2019
- 资助金额:
$ 98.81万 - 项目类别:
A Circuit Approach to Mechanisms and Predictors of Topiramate Response
托吡酯反应机制和预测因子的电路方法
- 批准号:
10473684 - 财政年份:2018
- 资助金额:
$ 98.81万 - 项目类别:
A Circuit Approach to Mechanisms and Predictors of Topiramate Response
托吡酯反应机制和预测因子的电路方法
- 批准号:
10237286 - 财政年份:2018
- 资助金额:
$ 98.81万 - 项目类别:
A “Circuits-First” Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
9552929 - 财政年份:2017
- 资助金额:
$ 98.81万 - 项目类别:
A “Circuits-First” Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
9339858 - 财政年份:2017
- 资助金额:
$ 98.81万 - 项目类别:
相似国自然基金
新型抗抑郁剂JZ-1201通过5-HT1A受体调节GABA/Glu系统平衡的作用机制研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
新型hNET-hDAT双靶点抗抑郁分子的发现及生物学评价
- 批准号:81903544
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于机器学习的抑郁症脑网络连接特征分型对抗抑郁剂的疗效预测研究
- 批准号:81801349
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
新型抗抑郁剂ZY-1408快速起效的5-HT2C受体机制
- 批准号:81703484
- 批准年份:2017
- 资助金额:20.1 万元
- 项目类别:青年科学基金项目
色氨酸羟化酶2基因(TPH2)和环境相互作用与抗抑郁剂疗效的关系:表观遗传学机制研究
- 批准号:81301167
- 批准年份:2013
- 资助金额:23.5 万元
- 项目类别:青年科学基金项目
相似海外基金
A Feasibility Study of a Novel, Fully Remote Counseling and Sound Therapy Program for Hyperacusis
新型、完全远程咨询和听觉过敏声音治疗计划的可行性研究
- 批准号:
10651126 - 财政年份:2023
- 资助金额:
$ 98.81万 - 项目类别:
Improving HIV and Depression Outcomes by Reducing HIV-Mental Illness Stigma in Malawi: a pilot effectiveness-implementation trial
在马拉维通过减少艾滋病毒精神疾病耻辱来改善艾滋病毒和抑郁症的结果:试点有效性实施试验
- 批准号:
10775243 - 财政年份:2022
- 资助金额:
$ 98.81万 - 项目类别:
Improving HIV and Depression Outcomes by Reducing HIV-Mental Illness Stigma in Malawi: a pilot effectiveness-implementation trial
在马拉维通过减少艾滋病毒精神疾病耻辱来改善艾滋病毒和抑郁症的结果:试点有效性实施试验
- 批准号:
10484751 - 财政年份:2022
- 资助金额:
$ 98.81万 - 项目类别:
Refinement and Testing of Implementation Strategies to Promote Psychotherapy Attendance for Depression among Latinx Teens
改进和测试实施策略以促进拉丁裔青少年接受抑郁症心理治疗
- 批准号:
10427037 - 财政年份:2022
- 资助金额:
$ 98.81万 - 项目类别:
Inflammatory and Glutamatergic Mechanisms of Sustained Threat in Adolescents with Depression: Toward Predictors of Treatment Response and Clinical Course
抑郁症青少年持续威胁的炎症和谷氨酸机制:治疗反应和临床过程的预测因子
- 批准号:
10622580 - 财政年份:2022
- 资助金额:
$ 98.81万 - 项目类别: