Transcriptome-wide, single-molecule dynamics of RNA-protein interaction.
RNA-蛋白质相互作用的转录组范围内的单分子动力学。
基本信息
- 批准号:10042693
- 负责人:
- 金额:$ 22.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAdoptedAffinityBindingBinding ProteinsBiologicalBiological AssayBiologyCell physiologyCellsChemicalsComplementComplementary DNAComputer softwareDataData AnalysesDetectionDevelopmentDiseaseDissociationEnzymesEquilibriumEvaluationEventFluorescenceGene ExpressionGenetic TranscriptionGoalsHealthHomeostasisImageImmobilizationIn SituIndividualKineticsLabelLengthLibrariesLinkMapsMeasuresMessenger RNAMethodsModificationMolecularNoiseOutcomePerformancePoly(A) TailPopulationProcessProteinsProtocols documentationRNARNA DecayRNA ProbesRNA SequencesRNA SplicingRNA-Directed DNA PolymeraseRNA-Protein InteractionReactionRegulationReproducibilityResolutionReverse Transcriptase Polymerase Chain ReactionSaccharomyces cerevisiaeSamplingSignal TransductionStructureSurfaceSurveysTechniquesTechnologyTestingTimeTranscriptTranslationsWorkYeastsbaseblindcrosslinking and immunoprecipitation sequencingexperienceexperimental studyin vivoinsightmRNA Decaymillisecondnovelprototypesingle moleculesoftware developmentsuccesstranscriptometranscriptome sequencing
项目摘要
RNA-protein interactions are a critical component of cellular function. Dynamic and coordinated binding and
release of RNA by multiple proteins underpins regulation throughout gene expression. However, our
technological capacity to visualize these dynamics on the timescales of processes such as splicing, translation,
or mRNA decay, remains limited. Transcriptome-wide methods that probe RNA-protein interactions – from
microarrays to RIP-/CLIP-seq – provide static, single-timepoint, or equilibrium snapshots. Conversely, real-time
single-molecule methods probe real-time dynamics on individual RNAs with exquisite molecular precision, but
are challenging to deploy at transcriptome scale. Single-molecule methods developed to bridge this gap have
measured protein-RNA equilibrium affinities and dissociation rates on large libraries of synthetic RNA sequences
up to ~300 nt. While these have highlighted kinetic diversity due to local RNA sequence and structure, they still
lack the ability to probe dynamics on full-length transcripts with in vivo chemical modifications, they do not directly
measure binding rates, and, importantly they have not addressed how multiple simultaneous protein-RNA
interactions coordinate. Here we propose development of a technology that circumvents these limitations,
focusing on mRNA-protein interactions. Our approach leverages direct observation of fluorescently-labeled
proteins binding and releasing tens of thousands of single mRNAs immobilized across an array of zero-mode
waveguides (ZMWs), on millisecond timescales. The ZMW-based platform offers the critical throughput,
multicolor fluorescence detection, and signal-to-noise metrics needed to advance the state of the art. The key
requisite technological breakthroughs will be made through two specific aims. In Aim 1, we will develop a
workflow to quantify the interaction dynamics of one and two proteins with a surface-immobilized Saccharomyces
cerevisiae transcriptome. We will validate this protocol in terms of reproducibility and completeness of
transcriptome capture, and the reproducibility of the kinetic data. In Aim 2 we will develop and optimize an
approach to also identify each mRNA in the experiment, allowing (multi)protein-binding dynamics to be assigned
to RNA identity. We will adopt a sequencing-by-synthesis approach, contrasting enzymatic strategies to robustly
read out RNA sequence in place. We will validate this approach by comparing the in-ZMW identified sequences
with bulk RNA-seq data for the mRNA population. The combined outcome of these Aims will be a prototype
technology and proof-of-concept for profiling (multi)protein interaction dynamics on each mRNA in the
transcriptome. This technology will complement static transcriptome-wide approaches, deepening the range of
mechanistic questions that can be asked and answered across RNA biology.
RNA - 蛋白质相互作用是细胞功能的关键组成部分。动态和协调的结合以及
在整个基因表达中,多种蛋白质的RNA释放。但是,我们的
在拼接,翻译,诸如拼接,翻译,
或mRNA衰变,仍然有限。探测RNA - 蛋白质相互作用的全转录组方法 - 从
微阵列rip-/clip-seq - 提供静态,单个时间点或同等快照。相反,实时
单分子方法对单个RNA进行独特的分子精度探测实时动力学,但
面临在转录组量表部署的挑战。为弥合此差距而开发的单分子方法具有
测量的蛋白质RNA等效亲和力和合成RNA序列的大库中的解离速率
最多〜300 nt。尽管这些突出了由于局部RNA序列和结构而引起的动力学多样性,但它们仍然
缺乏在体内化学修饰的全长转录本上探测动态的能力,它们不会直接
测量结合速率,重要的是,它们尚未解决多个简单蛋白-RNA的方式
交互坐标。在这里,我们建议开发一种规避这些限制的技术,
专注于mRNA-蛋白质相互作用。我们的方法利用荧光标记的直接观察
蛋白质结合并释放数以万计的单个mRNA,固定在零模式的阵列中
波导(ZMW),在毫秒时标。基于ZMW的平台提供了关键的吞吐量,
多色荧光检测以及推进最新状态所需的信噪比指标。钥匙
必要的技术突破将通过两个具体的目标进行。在AIM 1中,我们将开发一个
量化一个和两种蛋白质与表面毫米固定糖果的相互作用动力学的工作流程
酿酒酵母转录组。我们将根据可重复性和完整性来验证该协议
转录组捕获以及动力学数据的可重复性。在AIM 2中,我们将开发并优化
在实验中还识别每个mRNA的方法,允许分配(多)蛋白质结合动力学
到RNA身份。我们将采用一种逐个测序方法,将酶促策略与之相反
读出RNA序列到位。我们将通过比较IN-ZMW确定的序列来验证这种方法
带有MRNA种群的大量RNA-Seq数据。这些目标的综合结果将是原型
在每个mRNA上进行分析(多)蛋白质相互作用动力学的技术和概念验证
转录组。这项技术将补充整个静态转录组方法,加深
可以在RNA生物学上询问和回答的机械问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean E O'Leary其他文献
Sean E O'Leary的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean E O'Leary', 18)}}的其他基金
Transcriptome-wide, single-molecule dynamics of RNA-protein interaction.
RNA-蛋白质相互作用的转录组范围内的单分子动力学。
- 批准号:
10242848 - 财政年份:2020
- 资助金额:
$ 22.42万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 22.42万 - 项目类别:
Structural basis for differential regulation and selective inhibition of human CTP synthase 1
人CTP合酶1差异调节和选择性抑制的结构基础
- 批准号:
10393643 - 财政年份:2021
- 资助金额:
$ 22.42万 - 项目类别:
Structural basis for differential regulation and selective inhibition of human CTP synthase 1
人CTP合酶1差异调节和选择性抑制的结构基础
- 批准号:
10598529 - 财政年份:2021
- 资助金额:
$ 22.42万 - 项目类别:
Structural basis for differential regulation and selective inhibition of human CTP synthase 1
人CTP合酶1差异调节和选择性抑制的结构基础
- 批准号:
10207218 - 财政年份:2021
- 资助金额:
$ 22.42万 - 项目类别:
Transcriptome-wide, single-molecule dynamics of RNA-protein interaction.
RNA-蛋白质相互作用的转录组范围内的单分子动力学。
- 批准号:
10242848 - 财政年份:2020
- 资助金额:
$ 22.42万 - 项目类别: