PFOS-induced dopaminergic neurodegeneration across nematode, amphibian, and rodent models
线虫、两栖动物和啮齿动物模型中全氟辛烷磺酸诱导的多巴胺能神经变性
基本信息
- 批准号:10042289
- 负责人:
- 金额:$ 22.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmphibiaAnimal ModelAnimalsBig DataBiologicalBiological ModelsBiologyBrainCell physiologyCessation of lifeClinical TrialsComparative BiologyComparative StudyCoupledDataDetectionDevelopmental ToxicantDoseEnvironmental PollutionExposure toGoalsHealthHypothalamic structureLinkMeasuresModelingMovement DisordersNematodaNerve DegenerationNeurobiologyNeurodegenerative DisordersNeurologicNeurotransmittersOutcomeParkinson DiseasePathogenesisPathogenicityPathway interactionsPhasePhenotypePhylogenetic AnalysisPlasmaRanaResearchResearch Project GrantsRiskRisk FactorsRodentRodent ModelRoleSystemTestingTherapeuticTissuesTranslationsUrsidae Familybioaccumulationcomparativedisorder riskdopaminergic neurondosagehigh rewardhigh riskinnovationnervous system disorderneurobehavioralneuropathologyneurotoxicityneurotransmissionnoveloxidative damageperfluorooctane sulfonatepituitary thyroid axisprotein aggregationresilienceresponsespecies differencesuccess
项目摘要
Parkinson's disease (PD) is a debilitating movement disorder (affecting ~5 million world‐wide) resulting from
selective death of dopamine (DA) neurons. To date, numerous rarely encountered exposures have been
investigated as risk factors, but none have been clearly linked to PD. Further, the translation of therapeutics that
are promising in animal studies to successful clinical trials has been very poor. These gaps in the field suggest
serious weaknesses in the utilization of animal models in PD research. Most PD studies test hypotheses in single
model systems. However, there are clear advantages with respect to increasing the strength of the findings and
advancing the field through understanding species differences. This R21 aims to be highly responsive to PAR‐
17‐039 (Comparative Biology of Neurodegeneration) by testing PD‐relevant neurodegeneration across three
phylogenetically diverse animal model systems. In the spirit of an R21, the proposal utilizes high risk/high
reward approaches, where novel risk factors will be tested to advance the understanding of the biology of PD.
Per‐ and polyfluoroalkyl substances (PFAS) are widespread environmental contaminants that have been
investigated as developmental toxicants, with little information on long‐term neurotoxicity. Our preliminary
mechanistic and neuropathology data in nematode and amphibian models suggest that exposure to PFAS,
especially perfluorooctane sulfonate (PFOS) induces selective PD‐relevant, DAergic neurotoxicity. This project
will address an important gap on how PFAS exposure leads to long‐term neurological disease risk. We will test
the hypothesis: that species‐specific responses to PFOS‐induced dopaminergic neurodegeneration will advance
understanding of the biology of PD. Importantly, the hypothesis will be tested across 3 animal model systems,
where concordance will strengthen findings, and discordance will identify biological aspects of species‐specific
sensitivity to environmentally‐induced neurodegeneration. We will test our hypothesis through two aims: Aim
1. To identify species specific‐PFOS doses that induce DAergic neurodegeneration. PFOS doses will be
harmonized across systems to achieve brain levels that bear environmental relevance. Harmonization of internal
dose levels to set external applied dosages for each model system will allow us to interrogate mechanistic
hypothesis under comparable insults; Aim 2. Identify neurobiological underpinnings across species that
contribute to differential sensitivity to PFOS‐induced dopaminergic neurodegeneration. Here, we will identify
species‐specific differences in neurodegeneration that may underlie critical aspects of selective dopaminergic
neurotoxicity induced by PFOS exposure. We will conduct comparative biology studies that are both phenotypic
and mechanistic. Resultant data will be critical in determining: 1) Which species is best suited to PFOS
neurodegeneration studies; 2) Identifying which pathogenic pathways directly correlate with
neurodegeneration across species. These studies will mechanistically advance the field far beyond data from
typical single‐species studies.
帕金森病 (PD) 是一种使人衰弱的运动障碍(影响全球约 500 万人),其原因是
迄今为止,许多罕见的暴露已导致多巴胺(DA)神经元的选择性死亡。
作为危险因素进行了研究,但没有一个与 PD 明确相关。
从动物研究到临床试验的成功,这些差距表明该领域的差距非常小。
大多数PD研究在单一的假设上检验了动物模型的严重缺陷。
然而,模型系统在增强研究结果的强度方面具有明显的优势。
R21 旨在通过了解物种差异来推进该领域的发展。
17-039(神经退行性变的比较生物学)通过测试三个方面的 PD 相关神经退行性变
本着 R21 的精神,该提案利用了高风险/高风险的动物模型系统。
奖励方法,将测试新的风险因素,以增进对帕金森病生物学的理解。
全氟烷基物质和多氟烷基物质 (PFAS) 是广泛存在的环境污染物,已被
作为发育毒物进行研究,但我们的初步信息很少涉及长期神经毒性。
线虫和两栖动物模型的机制和神经病理学数据表明,接触 PFAS、
特别是全氟辛烷磺酸 (PFOS) 会诱导选择性 PD 相关的 DAergic 神经毒性。
将解决 PFAS 暴露如何导致长期神经系统疾病风险的重要差距。
假设:对 PFOS 引起的多巴胺能神经变性的物种特异性反应将会进展
重要的是,该假设将在 3 个动物模型系统中进行测试,
一致性将加强发现,不一致将识别物种特异性的生物学方面
我们将通过两个目标来检验我们的假设:
1. 确定引起 DAergic 神经变性的物种特异性 PFOS 剂量。
跨系统协调,以实现具有内部环境相关性的大脑水平。
为每个模型系统设置外部应用剂量的剂量水平将使我们能够询问机制
目标 2:确定不同物种的神经生物学基础
有助于对 PFOS 引起的多巴胺能神经变性的不同敏感性。在这里,我们将确定。
神经变性的物种特异性差异可能是选择性多巴胺能关键方面的基础
我们将进行表型比较生物学研究。
结果数据对于确定:1) 哪种物种最适合 PFOS 至关重要。
2)确定与神经退行性疾病直接相关的致病途径;
这些研究将机械地推动该领域远远超出来自物种的神经退行性变的数据。
典型的单物种研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason R Cannon其他文献
Jason R Cannon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason R Cannon', 18)}}的其他基金
Mechanisms of PhIP-induced dopaminergic neurotoxicity
PhIP 诱导多巴胺能神经毒性的机制
- 批准号:
10595271 - 财政年份:2023
- 资助金额:
$ 22.4万 - 项目类别:
PFOS-induced dopaminergic neurodegeneration across nematode, amphibian, and rodent models
线虫、两栖动物和啮齿动物模型中全氟辛烷磺酸诱导的多巴胺能神经变性
- 批准号:
10241311 - 财政年份:2020
- 资助金额:
$ 22.4万 - 项目类别:
PFOS-induced dopaminergic neurodegeneration across nematode, amphibian, and rodent models
线虫、两栖动物和啮齿动物模型中全氟辛烷磺酸诱导的多巴胺能神经变性
- 批准号:
10289079 - 财政年份:2020
- 资助金额:
$ 22.4万 - 项目类别:
Mechanisms of PhIP-induced dopaminergic neurotoxicity
PhIP 诱导多巴胺能神经毒性的机制
- 批准号:
9104730 - 财政年份:2016
- 资助金额:
$ 22.4万 - 项目类别:
PhIP-induced neurodegeneration: mechanisms and relevance to Parkinson's disease
PhIP 诱导的神经变性:机制及其与帕金森病的相关性
- 批准号:
8643407 - 财政年份:2014
- 资助金额:
$ 22.4万 - 项目类别:
PhIP-induced neurodegeneration: mechanisms and relevance to Parkinson's disease
PhIP 诱导的神经变性:机制及其与帕金森病的相关性
- 批准号:
8792389 - 财政年份:2014
- 资助金额:
$ 22.4万 - 项目类别:
New Approaches to Gene-environment Interaction Modeling in Parkinson's Disease
帕金森病基因-环境相互作用建模的新方法
- 批准号:
8350767 - 财政年份:2012
- 资助金额:
$ 22.4万 - 项目类别:
New Approaches to Gene-environment Interaction Modeling in Parkinson's Disease
帕金森病基因-环境相互作用建模的新方法
- 批准号:
8610308 - 财政年份:2012
- 资助金额:
$ 22.4万 - 项目类别:
New Approaches to Gene-environment Interaction Modeling in Parkinson's Disease
帕金森病基因-环境相互作用建模的新方法
- 批准号:
8424270 - 财政年份:2012
- 资助金额:
$ 22.4万 - 项目类别:
New Approaches to Gene-environment Interaction Modeling in Parkinson's Disease
帕金森病基因-环境相互作用建模的新方法
- 批准号:
8089751 - 财政年份:2011
- 资助金额:
$ 22.4万 - 项目类别:
相似国自然基金
长三角乡村地区景观环境演变对无尾两栖类生境的影响与空间推测
- 批准号:42371430
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
两栖类重要功能性状宏生态尺度空间格局特征及影响机制
- 批准号:32370553
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
城市化对两栖类繁殖生活史特征的影响-以上海为例
- 批准号:31901099
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
多个同域分布入侵种对当地无尾两栖类的影响机制
- 批准号:31870507
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
长白山区硬质化沟渠对两栖类活动的影响机制
- 批准号:41501566
- 批准年份:2015
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A portable quantitative polymerase chain reaction platform (qPCR) for rapid detection of pathogens impacting model organisms in animal facilities
便携式定量聚合酶链反应平台 (qPCR),用于快速检测影响动物设施中模式生物的病原体
- 批准号:
10604150 - 财政年份:2023
- 资助金额:
$ 22.4万 - 项目类别:
Mesh electronics for understanding space encoding in the amphibian brain
用于理解两栖动物大脑空间编码的网状电子器件
- 批准号:
10446284 - 财政年份:2022
- 资助金额:
$ 22.4万 - 项目类别:
Machine learning approaches to predict Acetylcholinesterase inhibition
预测乙酰胆碱酯酶抑制的机器学习方法
- 批准号:
10378934 - 财政年份:2021
- 资助金额:
$ 22.4万 - 项目类别:
PFOS-induced dopaminergic neurodegeneration across nematode, amphibian, and rodent models
线虫、两栖动物和啮齿动物模型中全氟辛烷磺酸诱导的多巴胺能神经变性
- 批准号:
10241311 - 财政年份:2020
- 资助金额:
$ 22.4万 - 项目类别:
Long-term effects of developmental exposure to a mixture of thyroid disruptors associated with hydrofracking on T cell development and antimicrobial immunity
发育暴露于与水力压裂相关的甲状腺干扰物混合物对 T 细胞发育和抗菌免疫的长期影响
- 批准号:
9977347 - 财政年份:2020
- 资助金额:
$ 22.4万 - 项目类别: