PFOS-induced dopaminergic neurodegeneration across nematode, amphibian, and rodent models
线虫、两栖动物和啮齿动物模型中全氟辛烷磺酸诱导的多巴胺能神经变性
基本信息
- 批准号:10042289
- 负责人:
- 金额:$ 22.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmphibiaAnimal ModelAnimalsBig DataBiologicalBiological ModelsBiologyBrainCell physiologyCessation of lifeClinical TrialsComparative BiologyComparative StudyCoupledDataDetectionDevelopmental ToxicantDoseEnvironmental PollutionExposure toGoalsHealthHypothalamic structureLinkMeasuresModelingMovement DisordersNematodaNerve DegenerationNeurobiologyNeurodegenerative DisordersNeurologicNeurotransmittersOutcomeParkinson DiseasePathogenesisPathogenicityPathway interactionsPhasePhenotypePhylogenetic AnalysisPlasmaRanaResearchResearch Project GrantsRiskRisk FactorsRodentRodent ModelRoleSystemTestingTherapeuticTissuesTranslationsUrsidae Familybioaccumulationcomparativedisorder riskdopaminergic neurondosagehigh rewardhigh riskinnovationnervous system disorderneurobehavioralneuropathologyneurotoxicityneurotransmissionnoveloxidative damageperfluorooctane sulfonatepituitary thyroid axisprotein aggregationresilienceresponsespecies differencesuccess
项目摘要
Parkinson's disease (PD) is a debilitating movement disorder (affecting ~5 million world‐wide) resulting from
selective death of dopamine (DA) neurons. To date, numerous rarely encountered exposures have been
investigated as risk factors, but none have been clearly linked to PD. Further, the translation of therapeutics that
are promising in animal studies to successful clinical trials has been very poor. These gaps in the field suggest
serious weaknesses in the utilization of animal models in PD research. Most PD studies test hypotheses in single
model systems. However, there are clear advantages with respect to increasing the strength of the findings and
advancing the field through understanding species differences. This R21 aims to be highly responsive to PAR‐
17‐039 (Comparative Biology of Neurodegeneration) by testing PD‐relevant neurodegeneration across three
phylogenetically diverse animal model systems. In the spirit of an R21, the proposal utilizes high risk/high
reward approaches, where novel risk factors will be tested to advance the understanding of the biology of PD.
Per‐ and polyfluoroalkyl substances (PFAS) are widespread environmental contaminants that have been
investigated as developmental toxicants, with little information on long‐term neurotoxicity. Our preliminary
mechanistic and neuropathology data in nematode and amphibian models suggest that exposure to PFAS,
especially perfluorooctane sulfonate (PFOS) induces selective PD‐relevant, DAergic neurotoxicity. This project
will address an important gap on how PFAS exposure leads to long‐term neurological disease risk. We will test
the hypothesis: that species‐specific responses to PFOS‐induced dopaminergic neurodegeneration will advance
understanding of the biology of PD. Importantly, the hypothesis will be tested across 3 animal model systems,
where concordance will strengthen findings, and discordance will identify biological aspects of species‐specific
sensitivity to environmentally‐induced neurodegeneration. We will test our hypothesis through two aims: Aim
1. To identify species specific‐PFOS doses that induce DAergic neurodegeneration. PFOS doses will be
harmonized across systems to achieve brain levels that bear environmental relevance. Harmonization of internal
dose levels to set external applied dosages for each model system will allow us to interrogate mechanistic
hypothesis under comparable insults; Aim 2. Identify neurobiological underpinnings across species that
contribute to differential sensitivity to PFOS‐induced dopaminergic neurodegeneration. Here, we will identify
species‐specific differences in neurodegeneration that may underlie critical aspects of selective dopaminergic
neurotoxicity induced by PFOS exposure. We will conduct comparative biology studies that are both phenotypic
and mechanistic. Resultant data will be critical in determining: 1) Which species is best suited to PFOS
neurodegeneration studies; 2) Identifying which pathogenic pathways directly correlate with
neurodegeneration across species. These studies will mechanistically advance the field far beyond data from
typical single‐species studies.
帕金森氏病(PD)是一种使人衰弱的运动障碍(影响了约500万个世界范围)
多巴胺(DA)神经元的选择性死亡。迄今为止,许多很少遇到的暴露
被调查为危险因素,但没有一个与PD明确相关的。此外,理论的翻译
在成功的临床试验中,在动物研究中有望很差。这些领域的差距暗示
PD研究中动物模型利用的严重弱点。大多数PD研究在单个中检验假设
模型系统。但是,在增加发现的力量方面具有明显的优势和
通过了解物种差异来推进该领域。该R21旨在对PAR高度响应
17-039(神经退行性的比较生物学)通过在三个中测试PD-元素神经变性
系统发育多样的动物模型系统。本着R21的精神,该提案利用了高风险/高
奖励方法,将测试新的风险因素以提高对PD生物学的理解。
每种和多氟烷基物质(PFA)是已广泛的环境污染物
被调查为发育有毒物质,几乎没有关于长期神经毒性的信息。我们的初步
线虫和两栖模型中的机械和神经病理学数据表明,暴露于PFA,
尤其是全氟辛烷磺酸盐(PFO)诱导选择性PD相关的DAERGIC神经毒性。这个项目
将解决有关PFAS暴露如何导致长期神经疾病风险的重要差距。我们将测试
假设:对PFOS诱导的多巴胺能神经变性的规格特异性响应将推进
对PD生物学的理解。重要的是,该假设将在3个动物模型系统中进行检验,
一致性将加强发现,而不一致将确定物种特异性的生物学方面
对环境引起的神经变性的敏感性。我们将通过两个目标来检验我们的假设:目标
1。确定诱导Daergic神经退行性的特定规范剂量。 PFO剂量将是
跨系统协调以达到具有环境相关性的大脑水平。内部协调
为每个模型系统设置外部施加剂量的剂量水平将使我们能够询问机械
在可比的侮辱下的假设;目标2。确定跨物种的神经生物学基础
有助于对PFOS诱导的多巴胺能神经退行性变化的差异敏感性。在这里,我们将确定
神经变性的物种特异性差异可能是选择性多巴胺能的关键方面的基础
PFOS暴露引起的神经毒性。我们将进行比较生物学研究,这些研究都是表型
和机械。最终数据对确定至关重要:1)哪些物种最适合PFO
神经变性研究; 2)确定哪种致病途径与
跨物种的神经变性。这些研究将机械地将领域推进到远离数据
典型的单物种研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason R Cannon其他文献
Jason R Cannon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason R Cannon', 18)}}的其他基金
Mechanisms of PhIP-induced dopaminergic neurotoxicity
PhIP 诱导多巴胺能神经毒性的机制
- 批准号:
10595271 - 财政年份:2023
- 资助金额:
$ 22.4万 - 项目类别:
PFOS-induced dopaminergic neurodegeneration across nematode, amphibian, and rodent models
线虫、两栖动物和啮齿动物模型中全氟辛烷磺酸诱导的多巴胺能神经变性
- 批准号:
10241311 - 财政年份:2020
- 资助金额:
$ 22.4万 - 项目类别:
PFOS-induced dopaminergic neurodegeneration across nematode, amphibian, and rodent models
线虫、两栖动物和啮齿动物模型中全氟辛烷磺酸诱导的多巴胺能神经变性
- 批准号:
10289079 - 财政年份:2020
- 资助金额:
$ 22.4万 - 项目类别:
Mechanisms of PhIP-induced dopaminergic neurotoxicity
PhIP 诱导多巴胺能神经毒性的机制
- 批准号:
9104730 - 财政年份:2016
- 资助金额:
$ 22.4万 - 项目类别:
PhIP-induced neurodegeneration: mechanisms and relevance to Parkinson's disease
PhIP 诱导的神经变性:机制及其与帕金森病的相关性
- 批准号:
8643407 - 财政年份:2014
- 资助金额:
$ 22.4万 - 项目类别:
PhIP-induced neurodegeneration: mechanisms and relevance to Parkinson's disease
PhIP 诱导的神经变性:机制及其与帕金森病的相关性
- 批准号:
8792389 - 财政年份:2014
- 资助金额:
$ 22.4万 - 项目类别:
New Approaches to Gene-environment Interaction Modeling in Parkinson's Disease
帕金森病基因-环境相互作用建模的新方法
- 批准号:
8350767 - 财政年份:2012
- 资助金额:
$ 22.4万 - 项目类别:
New Approaches to Gene-environment Interaction Modeling in Parkinson's Disease
帕金森病基因-环境相互作用建模的新方法
- 批准号:
8610308 - 财政年份:2012
- 资助金额:
$ 22.4万 - 项目类别:
New Approaches to Gene-environment Interaction Modeling in Parkinson's Disease
帕金森病基因-环境相互作用建模的新方法
- 批准号:
8424270 - 财政年份:2012
- 资助金额:
$ 22.4万 - 项目类别:
New Approaches to Gene-environment Interaction Modeling in Parkinson's Disease
帕金森病基因-环境相互作用建模的新方法
- 批准号:
8089751 - 财政年份:2011
- 资助金额:
$ 22.4万 - 项目类别:
相似国自然基金
两栖动物(蛙类)对新型卤代有机污染物的生物富集及其对污染物环境迁移影响的研究
- 批准号:42307349
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
暴露途径及休眠机制对毒害性有机污染物在两栖动物(蛙)中的生物富集、生物转化及毒性的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
土地利用与气候变化对西南山地两栖动物多样性的协同影响及其保护
- 批准号:32271737
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
暴露途径及休眠机制对毒害性有机污染物在两栖动物(蛙)中的生物富集、生物转化及毒性的影响研究
- 批准号:42277267
- 批准年份:2022
- 资助金额:53.00 万元
- 项目类别:面上项目
土地利用与气候变化对西南山地两栖动物多样性的协同影响及其保护
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
A portable quantitative polymerase chain reaction platform (qPCR) for rapid detection of pathogens impacting model organisms in animal facilities
便携式定量聚合酶链反应平台 (qPCR),用于快速检测影响动物设施中模式生物的病原体
- 批准号:
10604150 - 财政年份:2023
- 资助金额:
$ 22.4万 - 项目类别:
Mesh electronics for understanding space encoding in the amphibian brain
用于理解两栖动物大脑空间编码的网状电子器件
- 批准号:
10446284 - 财政年份:2022
- 资助金额:
$ 22.4万 - 项目类别:
Machine learning approaches to predict Acetylcholinesterase inhibition
预测乙酰胆碱酯酶抑制的机器学习方法
- 批准号:
10378934 - 财政年份:2021
- 资助金额:
$ 22.4万 - 项目类别:
PFOS-induced dopaminergic neurodegeneration across nematode, amphibian, and rodent models
线虫、两栖动物和啮齿动物模型中全氟辛烷磺酸诱导的多巴胺能神经变性
- 批准号:
10241311 - 财政年份:2020
- 资助金额:
$ 22.4万 - 项目类别:
Long-term effects of developmental exposure to a mixture of thyroid disruptors associated with hydrofracking on T cell development and antimicrobial immunity
发育暴露于与水力压裂相关的甲状腺干扰物混合物对 T 细胞发育和抗菌免疫的长期影响
- 批准号:
9977347 - 财政年份:2020
- 资助金额:
$ 22.4万 - 项目类别: