Investigating the mechanobiology of ER stress in the context of cell proliferation

研究细胞增殖背景下内质网应激的力学生物学

基本信息

项目摘要

Project summary The unfolded protein response (UPR) is a critically important signaling network that is responsible for maintaining the health of the endoplasmic reticulum (ER). While the typical outcome of UPR activation is cytoprotective, prolonged or excessive UPR activity can drive cells towards apoptotic death. The UPR serves as a potent controller of cell fate, and its dysregulation is known to be implicated in a broad range of human diseases such as diabetes, neurodegeneration, autoimmune disorders, and cancer. The UPR comprises three interconnected branches that exhibit spatiotemporally distinct patterns of activation both in normal development and in disease. A lack of understanding of how the UPR is differentially regulated in different cell types and tissues has so far precluded it from being successfully targeted in human patients. The best-studied branch of the UPR is mediated by the ER membrane-resident bifunctional kinase-RNase IRE1 (inositol-requiring enzyme 1). Recent work demonstrated that IRE1 signaling is closely tied to adhesion, cell migration, and cells’ ability to receive and respond to external cues. Cell signaling is often coupled to mechanical and chemical changes in the local microenvironment, but the involvement of IRE1 and the UPR in this coupling is only beginning to be revealed. Since UPR components are ubiquitously expressed in nearly all cell types, context-dependent regulation offers an attractive potential explanation for the observed large variances in UPR signaling across tissues. However, it remains to be determined what properties of the local environment cause cells to rely on UPR signaling and how this information is communicated. I propose to build on the tools I developed as a postdoc and on the unique combined resources of my two co-mentors to answer these challenging and exciting questions. I will engineer precisely defined growth substrates of varying chemical composition, porosity, stiffness, and 3-dimensional organization. I will then use chemical inhibitors and optogenetic activators of IRE1 to identify which substrate properties render cells reliant on IRE1 signaling and which properties render IRE1 dispensable. Substrate dependence of IRE1 signaling will be functionally separated from general UPR activation and mapped to specific nodes within the UPR. Finally, a targeted approach will identify the specific molecular players responsible for the information flow between ER stress sensors and the extracellular environment. Throughout the mentored phase of the award, I will continue to hone my skills and qualifications as an independent scientist. Working closely with the lab of Dr. Valerie Weaver will provide me with the expertise in cellular mechanobiology and substrate engineering, complementing the deep background of my primary mentor, Dr. Peter Walter, in UPR signaling. Learning how information flows between the ER and the extracellular matrix will reveal exciting new cell biology, result in possible therapeutic applications, and serve as a strong foundation for an independent research program in my future laboratory.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vladislav Belyy其他文献

Vladislav Belyy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vladislav Belyy', 18)}}的其他基金

Probing ER stress signaling with orthogonal control of receptor oligomerization
通过受体寡聚化的正交控制探索内质网应激信号传导
  • 批准号:
    10665915
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
Investigating the mechanobiology of ER stress in the context of cell proliferation
研究细胞增殖背景下内质网应激的力学生物学
  • 批准号:
    10246471
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:

相似国自然基金

促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
  • 批准号:
    32301204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
  • 批准号:
    82370515
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
  • 批准号:
    82360301
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
  • 批准号:
    82302691
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
膜仿生载基因纳米球体内重编程巨噬细胞抑制肌腱粘连的机制研究
  • 批准号:
    82372389
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Discovery of PPI inhibitors for the FAK FAT domain
发现 FAK FAT 结构域的 PPI 抑制剂
  • 批准号:
    10576504
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
Probing ER stress signaling with orthogonal control of receptor oligomerization
通过受体寡聚化的正交控制探索内质网应激信号传导
  • 批准号:
    10665915
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
Neutrophil Microscopy and Quantitative Imaging Core B
中性粒细胞显微镜和定量成像 Core B
  • 批准号:
    10270896
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
Neutrophil Microscopy and Quantitative Imaging Core B
中性粒细胞显微镜和定量成像 Core B
  • 批准号:
    10470239
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
Neutrophil Microscopy and Quantitative Imaging Core B
中性粒细胞显微镜和定量成像 Core B
  • 批准号:
    10651782
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了