Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization

信号蛋白/丛蛋白介导的细胞骨架重组的分子机制

基本信息

  • 批准号:
    10008272
  • 负责人:
  • 金额:
    $ 3.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-05 至 2020-09-04
  • 项目状态:
    已结题

项目摘要

7. Project Summary/Abstract The goals of this project are to decipher the mechanisms that regulate the actin and microtubule cytoskeletons, the structures underlying neural cell behaviors including morphology, polarity, adhesion, process elongation, motility, navigation, connectivity, and plasticity. To change their size, shape, and connectivity, neurons require actin and tubulin proteins to assemble together into long polymers (F-actin and microtubules, respectively) – and numerous extracellular stimuli have now been identified that alter the assembly and organization of these cytoskeletal structures. Yet, we still know little of how these extracellular cues exert their precise effects on the cytoskeleton. To better understand these mechanisms, my lab has been focusing on one of the largest families of extracellular cues, the Semaphorins (Semas) – which alter neuronal behaviors by eliciting destabilizing effects on both F-actin and microtubules. Our strategy has been to use model organisms and screening approaches to search for proteins that work in the signal transduction cascade utilized by Semas and their Plexin receptors. Among the proteins that we have identified, is a new family of intracellular proteins called the MICALs that are required for Sema/Plexin signal transduction. Now, work in my lab during the previous funding cycle of this R01 has revealed that the MICALs employ a previously unknown Redox signaling system to control the actin cytoskeleton. Namely, we have found that Mical is a novel F-actin disassembly factor – and our results reveal that Sema/Plexin-mediated reorganizations of the actin cytoskeleton can be precisely achieved in space and time through activation of Mical. We have also found that the MICALs belong to a class of oxidoreductase (Redox) enzymes and that Mical employs its Redox enzymatic activity to alter the properties of F-actin. Our work has gone on to identify that Mical uses F-actin as a direct substrate and post- translationally oxidizes conserved amino acids on actin, simultaneously dismantling F-actin and decreasing polymerization. Moreover, we find that this Sema/Plex/Mical-mediated Redox regulation of actin is reversible (by a protein called SelR/MsrB) – and that this specific reversible Redox actin regulatory system directs multiple different biological processes in neuronal and non-neuronal tissues. Therefore, I hypothesize that Sema/Plexin guidance cues utilize a reversible Redox signaling mechanism composed of Mical and SelR to directly and spatiotemporally coordinate cytoskeletal remodeling to drive cellular form and function. I propose to test this hypothesis by following-up on several lines of preliminary observations that illuminate critical molecular mechanisms of Sema/Plexin/Mical-mediated cytoskeletal reorganization including 1) specific types of F-actin/networks of F-actin that are most responsive to Sema/Plex/Mical effects, 2) molecular interactions that allow Sema/Plexins to coordinate the disassembly of the actin and microtubule cytoskeletons, 3) ligand/receptor systems that allow Sema/Plex/Mical cytoskeletal effects to be magnified spatiotemporally, and 4) specific actin regulatory proteins that protect actin filaments from Sema/Plex/Mical effects.
7。项目摘要/摘要 该项目的目标是破译调节肌动蛋白和微管细胞骨架的机制,即 神经元细胞行为的基础结构,包括形态,极性,粘合剂,过程伸长, 运动,导航,连通性和可塑性。为了改变其大小,形状和连通性,需要神经元 肌动蛋白和微管蛋白共同组装成长聚合物(分别为F-肌动蛋白和微管) - 现在已经确定了许多细胞外刺激,可以改变这些的组装和组织 细胞骨架结构。但是,我们仍然几乎不知道这些细胞外提示如何对 细胞骨架。为了更好地了解这些机制,我的实验室一直专注于最大的家庭之一 细胞外提示,信号素(SEMA) - 通过引起不稳定的神经元行为改变神经元行为 对F-肌动蛋白和微管的影响。我们的策略是使用模型生物和筛选 搜索在信号传输中使用的蛋白质的方法 丛受体。在我们确定的蛋白质中,是一个新的细胞内蛋白质家族,称为 SEMA/PLEXIN信号转移所需的微分子。现在,在以前的资金中在我的实验室工作 该R01的循环表明,Micals员工是一个以前未知的氧化还原信号系统到 控制肌动蛋白细胞骨架。也就是说,我们发现微肌动蛋白是一种新型的F-肌动蛋白拆卸因子,并且 我们的结果表明,肌动蛋白细胞骨架的Sema/plexin介导的重组可以精确 通过微观激活在空间和时间中实现。我们还发现,Micals属于班级 氧化还原酶(氧化还原)酶的酶和微雇员的氧化还原酶活性以改变特性 F-肌动蛋白。我们的工作一直在确定Micro使用F-肌动蛋白作为直接底物,并在 翻译在肌动蛋白上氧化保守的氨基酸,只需拆卸F-肌动蛋白并减少 聚合。此外,我们发现肌动蛋白的这种SEMA/PLEX/MICAL介导的氧化还原调节是可逆的 (通过一种称为SELR/MSRB的蛋白质) - 并且这种特定可逆的氧化还原肌动蛋白调节系统指导 神经元和非神经元组织中的多个不同的生物学过程。因此,我假设 SEMA/PLEXIN引导提示使用由Micro和Selr组成的可逆氧化还原信号传导机制 直接和空间协调细胞骨架重塑以驱动细胞形式和功能。我建议 通过跟踪点亮临界的几条初步观察结果来检验这一假设 Sema/plexin/微介导的细胞骨架重组的分子机制,包括1)特定类型 F-肌动蛋白的F-肌动蛋白/网络对SEMA/PLEX/MICAL效应最有反应,2)分子相互作用 这允许Sema/plexins协调肌动蛋白和微管细胞骨架的拆卸,3) 允许sema/plex/mical细胞骨架效应的配体/受体系统可以放大时空,并且 4)保护肌动蛋白丝免受SEMA/PLEX/MICAL效应的特定肌动蛋白调节蛋白。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JONATHAN R TERMAN其他文献

JONATHAN R TERMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JONATHAN R TERMAN', 18)}}的其他基金

Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
  • 批准号:
    8221002
  • 财政年份:
    2011
  • 资助金额:
    $ 3.36万
  • 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
  • 批准号:
    8087940
  • 财政年份:
    2011
  • 资助金额:
    $ 3.36万
  • 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
  • 批准号:
    8608013
  • 财政年份:
    2011
  • 资助金额:
    $ 3.36万
  • 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
  • 批准号:
    8792256
  • 财政年份:
    2011
  • 资助金额:
    $ 3.36万
  • 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
  • 批准号:
    10352310
  • 财政年份:
    2011
  • 资助金额:
    $ 3.36万
  • 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
  • 批准号:
    8423045
  • 财政年份:
    2011
  • 资助金额:
    $ 3.36万
  • 项目类别:
Molecular mechanisms of axon guidance and neural connectivity
轴突引导和神经连接的分子机制
  • 批准号:
    7741327
  • 财政年份:
    2009
  • 资助金额:
    $ 3.36万
  • 项目类别:
Molecular mechanisms of axon guidance and neural connectivity
轴突引导和神经连接的分子机制
  • 批准号:
    8464273
  • 财政年份:
    2009
  • 资助金额:
    $ 3.36万
  • 项目类别:
Molecular mechanisms of axon guidance and neural connectivity
轴突引导和神经连接的分子机制
  • 批准号:
    8973574
  • 财政年份:
    2009
  • 资助金额:
    $ 3.36万
  • 项目类别:
Molecular mechanisms of axon guidance and neural connectivity
轴突引导和神经连接的分子机制
  • 批准号:
    9180722
  • 财政年份:
    2009
  • 资助金额:
    $ 3.36万
  • 项目类别:

相似海外基金

Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
  • 批准号:
    8221002
  • 财政年份:
    2011
  • 资助金额:
    $ 3.36万
  • 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
  • 批准号:
    8087940
  • 财政年份:
    2011
  • 资助金额:
    $ 3.36万
  • 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
  • 批准号:
    8608013
  • 财政年份:
    2011
  • 资助金额:
    $ 3.36万
  • 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
  • 批准号:
    8792256
  • 财政年份:
    2011
  • 资助金额:
    $ 3.36万
  • 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
  • 批准号:
    10352310
  • 财政年份:
    2011
  • 资助金额:
    $ 3.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了