In vivo gene editing of CCR5 in bone marrow using improved lentiviral vectors
使用改进的慢病毒载体对骨髓中的 CCR5 进行体内基因编辑
基本信息
- 批准号:10029620
- 负责人:
- 金额:$ 5.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-11 至 2021-04-14
- 项目状态:已结题
- 来源:
- 关键词:AIDS preventionAddressAnti-Retroviral AgentsAntiviral AgentsAutoimmune DiseasesBackBindingBiochemicalBiologicalBone MarrowBone Marrow TransplantationBypassCCR5 geneCD34 geneCD4 Positive T LymphocytesCRISPR/Cas technologyCell Culture TechniquesCell physiologyCellsChimeric ProteinsClinical TrialsCommunicable DiseasesConfocal MicroscopyCulture TechniquesDataDefectDevelopmentDiseaseDropsEconomicsEpidemicGene DeliveryGene-ModifiedGenesGeneticGenetic MaterialsGlycoproteinsHIVHIV GenomeHIV InfectionsHIV resistanceHIV-1HeadHemagglutininHematologic NeoplasmsHematological DiseaseHematopoietic SystemHematopoietic stem cellsHighly Active Antiretroviral TherapyHumanIn SituIn VitroIndividualInfectionInfusion proceduresInjectionsInvestigationKnock-outLentivirus VectorLongevityMeaslesMeasles virusMediatingMembraneMendelian disorderMethodsModificationMusMutagenesisParticipantPatientsPharmacotherapyPhasePhase I/II Clinical TrialPhenotypePopulationPriceProteinsProtocols documentationResearchResistanceResourcesReverse TranscriptionSiteStem cell transplantSystemTechniquesTherapeuticTranslatingVesicular stomatitis Indiana virusViralViral Load resultViral VectorVirusWorkcell typecellular transductioncombatcostexperimental studygene correctiongene therapygenome editinghematopoietic genehumanized mouseimprovedin vivoinsightknockout genemouse modelnovelnovel strategiespreventreconstitutionsmall moleculestem cellssuccesstooltraffickingvector
项目摘要
Project Summary/Abstract:
While research efforts to develop highly-active antiretroviral therapy have greatly extended healthy lifespan for
HIV-1 infected individuals receiving treatment, the virus poses unique challenges for the development of a
long-sought after cure. Part of the viral lifecycle involves the permanent insertion of the HIV genome into a host
cell's genetic material, establishing a long term population of HIV infected cells. New strategies to prevent
spread from these cells must be developed. Unlike currently available antiviral drugs, anti-HIV gene therapy
holds the potential for the treatment and even cure of HIV-1 infection. The gene therapy-mediated knockout of
the HIV co-receptor CCR5 in HIV susceptible cells has shown potential in greatly reducing HIV viral loads in
both mouse models of HIV disease and early phase human clinical trials. Surprisingly, in rare trial participants,
this drop in viral load is sustained even when antiretroviral drug therapy is halted. However, all current anti-HIV
gene therapy strategies rely on the separation and ex vivo manipulation of HIV susceptible cells, followed by
re-infusion of these newly HIV-resistant cells back into patients. This approach requires access to advanced
cell culture and bone marrow transplant facilities and is currently prohibitively expensive for the majority of HIV
infected individuals living where the HIV epidemic continues to worsen.
To address these technical, economic, and biological challenges, new approaches to inexpensive gene
therapy must be developed. CD34+ hematopoietic stem and progenitor cells (HSPCs) are an attractive target
for gene therapy, given their status as predecessors to all cells susceptible to HIV. However, these cells have
shown resistance to genetic modification by currently available lentiviral vectors. In new data introduced in this
application, I demonstrate previously unforeseen levels of gene delivery to CD34+ HSPCs in vitro, achieved by
pseudotyping lentiviral vectors with the measles virus hemagglutinin and fusion glycoproteins. Mechanistic
insights from this work has guided mutagenesis of vesicular-stomatitis virus glycoproteins which will be used to
identify restriction factors in CD34+ HSPCs. In this application, I propose using these novel lentiviral vectors to
evaluate the potential of in vivo transduction as a potential anti-HIV strategy, using a humanized mouse model
of HIV infection. By direct intrafemoral injection of lentiviral vectors carrying the CRISPR/Cas9 system targeting
CCR5, I will evaluate if this approach can achieve sufficiently high levels of gene knockout to protect from HIV
challenge. If successful, this approach holds the potential to radically reduce the cost and technical difficulty of
anti-HIV gene therapy.
项目摘要/摘要:
虽然开发高活动性抗逆转录病毒疗法的研究工作大大延长了健康的寿命
HIV-1感染了接受治疗的人,该病毒为发展带来了独特的挑战
长期治愈。病毒生命周期的一部分涉及将HIV基因组永久插入宿主
细胞的遗传物质,建立了长期的HIV感染细胞。防止的新策略
必须从这些细胞中扩散。与目前可用的抗病毒药物不同,抗HIV基因治疗
具有治疗甚至HIV-1感染的潜力。基因治疗介导的敲除
HIV易感细胞中的HIV共受体CCR5在大大降低HIV病毒载荷的潜力
HIV疾病的小鼠模型和早期人类临床试验。令人惊讶的是,在罕见的审判参与者中,
即使抗逆转录病毒药物治疗停止,病毒负荷下降也会持续。但是,所有当前的抗HIV
基因治疗策略依赖于HIV易感细胞的分离和离体操纵,其次是
将这些新的抗HIV细胞再浸入患者中。这种方法需要访问高级
细胞培养和骨髓移植设施,目前大多数HIV的昂贵
居住在艾滋病毒流行的地方继续恶化的感染者。
为了解决这些技术,经济和生物学挑战,新的方法廉价基因
必须开发治疗。 CD34+造血茎和祖细胞(HSPC)是一个有吸引力的靶标
对于基因治疗,鉴于它们作为所有容易受到艾滋病毒的细胞的前身。但是,这些细胞具有
显示了当前可用的慢病毒载体对遗传修饰的抗性。在此引入的新数据中
应用,我证明了先前无法预料的基因递送到CD34+ HSPC的体外,通过
与麻疹病毒血凝素和融合糖蛋白的假病毒载体的拟元分型载体。机理
这项工作的洞察力指导了囊泡炎性炎病毒糖蛋白的诱变,该诱变将用于
确定CD34+ HSPC中的限制因子。在此应用中,我建议使用这些新颖的慢病毒向量
使用人源化小鼠模型,评估体内转导作为潜在的抗HIV策略的潜力
艾滋病毒感染。通过直接携带CRISPR/CAS9系统的慢病毒向量的直接注射
CCR5,我将评估这种方法是否可以实现足够高的基因敲除以保护艾滋病毒
挑战。如果成功,这种方法有可能从根本上降低成本和技术难度
抗HIV基因治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stosh Ozog其他文献
Stosh Ozog的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stosh Ozog', 18)}}的其他基金
In vivo gene editing of CCR5 in bone marrow using improved lentiviral vectors
使用改进的慢病毒载体对骨髓中的 CCR5 进行体内基因编辑
- 批准号:
9349422 - 财政年份:2017
- 资助金额:
$ 5.05万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
XVIR-110 an ultra-long-acting INSTI for HIV pre-exposure prophylaxis in IND-enabling studies
XVIR-110 是一种超长效 INSTI,用于 IND 支持研究中的 HIV 暴露前预防
- 批准号:
10764186 - 财政年份:2023
- 资助金额:
$ 5.05万 - 项目类别:
Developing a regionally representative risk assessment tool to identify men at highest risk of HIV acquisition in sub-Saharan Africa
开发具有区域代表性的风险评估工具,以确定撒哈拉以南非洲地区感染艾滋病毒风险最高的男性
- 批准号:
10762645 - 财政年份:2023
- 资助金额:
$ 5.05万 - 项目类别:
Inter-CFAR Women and HIV Biennial Symposium
Inter-CFAR 妇女与艾滋病毒双年研讨会
- 批准号:
10762305 - 财政年份:2023
- 资助金额:
$ 5.05万 - 项目类别:
CCR5 determinants for the HIV transmitted founder phenotype
HIV 传播创始人表型的 CCR5 决定因素
- 批准号:
10760884 - 财政年份:2023
- 资助金额:
$ 5.05万 - 项目类别:
Combining sources of information to improve HIV pre-exposure prophylaxis
结合信息来源改善艾滋病毒暴露前预防
- 批准号:
10700193 - 财政年份:2023
- 资助金额:
$ 5.05万 - 项目类别: