NADPH oxidase regulates growth cone guidance
NADPH氧化酶调节生长锥引导
基本信息
- 批准号:10033080
- 负责人:
- 金额:$ 33.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsAddressAdhesionsAdultAffectAntioxidantsAplysiaAxonBehaviorBehavioral AssayBiological AssayBiological ModelsBiosensorCell ProliferationCell physiologyCellsCuesDataDevelopmentDyesEmbryoEnvironmentEvolutionEye DevelopmentFishesFluorescent DyesFunctional disorderGoalsGrowthGrowth ConesHydrogen PeroxideImageImaging TechniquesImmunityIn VitroInjuryKnowledgeMeasuresMediatingMolecularMovementNADPNADPH OxidaseNatural regenerationNerve RegenerationNervous System TraumaNervous system structureNeurodegenerative DisordersNeuronsOxidasesPhysiologicalPhysiologyPlayPositioning AttributeProcessProteinsPublishingRattusReactive Oxygen SpeciesResearchRetinal Ganglion CellsRoleSecond Messenger SystemsSignal TransductionSignaling MoleculeSourceStructureTestingTransgenic OrganismsVisualWorkZebrafishaxon growthaxon guidanceaxon regenerationaxonal pathfindingcell motilitycentral nervous system injuryexperienceextracellularimprovedin vivoinhibitor/antagonistinnovationinsightlive cell imagingmigrationmutantnerve supplynervous system developmentneurite growthneuron developmentneuronal growthnovelresponseretinotectalsmall moleculesrc-Family Kinasestherapy design
项目摘要
Reactive oxygen species (ROS) can act as signaling molecules mediating physiological functions in immunity,
cell proliferation, differentiation, and migration. Whether ROS have a major signaling function as second
messengers in axonal growth and guidance is currently unclear. The neuronal growth cone is a highly motile
structure at the tip of neuronal processes, guiding them to appropriate target cells during development and
regeneration of the nervous system. The growth cone integrates molecular information from the environment
and transduces it via multiple signaling cascades to affect underlying cytoskeletal dynamics. Whereas most
major second messenger systems have been implicated in regulating directional growth cone movement, such
a role has not been established for ROS. The present study has two major objectives focusing on ROS produced
by nicotinamide adenine dinucleotide phosphate-(NADPH) oxidase (Nox): (1) to determine the cellular and
molecular mechanism by which ROS control neurite growth; and (2) to determine whether ROS act as second
messengers downstream of specific guidance cues to control axonal growth and guidance. The four central
hypotheses state that (1) a physiological level of ROS is optimal and required for adhesion-mediated neurite
growth; (2) Src tyrosine kinase is a key target of ROS signaling in neuronal growth cones; (3) neuronal Nox2-derived ROS regulate axonal pathfinding; and (4) specific axon guidance cues such as slit2 control axonal
pathfinding via Nox2-derived ROS both in vitro and in vivo. This project will take advantage of two excellent
model systems to test these hypotheses: large Aplysia growth cones for quantitative live cell imaging of growth
cone motility and intracellular ROS in vitro and developing zebrafish embryos for imaging and manipulating
axonal development in vivo. In vitro growth cone guidance assays, novel fluorescent dyes and biosensors
specific for hydrogen peroxide and Src activity, respectively, advanced imaging techniques, chimeric analysis of
Nox2-deficient zebrafish lines as well as retinal ganglion cell-specific Nox2-mutant fish lines will be used to
address the following two Specific Aims: (1) The first aim is to determine the cellular and molecular mechanism
by which ROS in control neurite growth. (2) The second aim is to determine the role of neuronal Nox2 in axonal
pathfinding of retinal ganglion cells. The proposed work is highly innovative because it investigates ROS as a
novel group of signaling molecules in axonal growth and guidance and develops several new zebrafish lines
suitable for studying Nox function in the nervous system. In summary, these studies have the potential of leading
to breakthrough findings in the field of neuronal development and regeneration. Furthermore, since basic
mechanisms of axonal growth and guidance are highly conserved across species, these studies will impact the
development of antioxidant treatments for neurodegenerative diseases and central nervous system injuries.
活性氧(ROS)可以作为介导免疫生理功能的信号分子,
细胞增殖、分化和迁移。 ROS是否具有次要的信号传导功能
轴突生长和引导中的信使目前尚不清楚。神经元生长锥是一个高度活动的
神经元过程尖端的结构,在发育和发育过程中引导它们到达适当的靶细胞
神经系统的再生。生长锥整合了环境中的分子信息
并通过多个信号级联转导它来影响潜在的细胞骨架动力学。而大多数
主要的第二信使系统与调节定向生长锥运动有关,例如
尚未为 ROS 建立角色。本研究有两个主要目标,重点关注产生的 ROS
通过烟酰胺腺嘌呤二核苷酸磷酸-(NADPH)氧化酶(Nox):(1)测定细胞和
ROS控制神经突生长的分子机制; (2) 确定 ROS 是否充当第二个
特定引导线索下游的信使,控制轴突的生长和引导。四大中心
假设指出 (1) ROS 的生理水平是最佳的,并且是粘附介导的神经突所必需的
生长; (2) Src酪氨酸激酶是神经元生长锥中ROS信号传导的关键靶点; (3)神经元Nox2衍生的ROS调节轴突寻路; (4)特定的轴突引导线索,例如slit2控制轴突
通过 Nox2 衍生的 ROS 在体外和体内进行寻路。该项目将利用两个优秀的
测试这些假设的模型系统:用于定量活细胞生长成像的大海兔生长锥
体外视锥细胞运动和细胞内 ROS 以及用于成像和操作的斑马鱼胚胎发育
体内轴突发育。体外生长锥引导测定、新型荧光染料和生物传感器
分别针对过氧化氢和 Src 活性,先进的成像技术,嵌合分析
Nox2 缺陷斑马鱼品系以及视网膜神经节细胞特异性 Nox2 突变鱼品系将用于
解决以下两个具体目标:(1)第一个目标是确定细胞和分子机制
ROS通过它控制神经突的生长。 (2)第二个目的是确定神经元Nox2在轴突中的作用
视网膜神经节细胞的寻路。拟议的工作具有高度创新性,因为它将 ROS 作为一种
轴突生长和引导中的一组新型信号分子,并开发了几种新的斑马鱼品系
适合研究神经系统中的Nox功能。总之,这些研究有潜力引领
神经元发育和再生领域的突破性发现。此外,由于基本
轴突生长和引导的机制在物种之间高度保守,这些研究将影响
开发针对神经退行性疾病和中枢神经系统损伤的抗氧化疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL Marcel SUTER其他文献
DANIEL Marcel SUTER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL Marcel SUTER', 18)}}的其他基金
NADPH oxidase regulates growth cone guidance
NADPH氧化酶调节生长锥引导
- 批准号:
10200922 - 财政年份:2020
- 资助金额:
$ 33.56万 - 项目类别:
NADPH oxidase regulates growth cone guidance
NADPH氧化酶调节生长锥引导
- 批准号:
10437838 - 财政年份:2020
- 资助金额:
$ 33.56万 - 项目类别:
NADPH oxidase regulates growth cone guidance
NADPH氧化酶调节生长锥引导
- 批准号:
10657554 - 财政年份:2020
- 资助金额:
$ 33.56万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 33.56万 - 项目类别:
Elucidating the role of Myosin 5b in intestinal inflammation
阐明肌球蛋白 5b 在肠道炎症中的作用
- 批准号:
10883872 - 财政年份:2023
- 资助金额:
$ 33.56万 - 项目类别:
Diversity Supplement: Novel Role of Nephron Epithelialization in Nuclear Signaling
多样性补充:肾单位上皮化在核信号传导中的新作用
- 批准号:
10853534 - 财政年份:2023
- 资助金额:
$ 33.56万 - 项目类别:
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 33.56万 - 项目类别: