Wireless ultrasonic powering and monitoring of Left Ventricular Assist Devices through the Internet of Medical Things

通过医疗物联网对左心室辅助装置进行无线超声波供电和监测

基本信息

  • 批准号:
    10007683
  • 负责人:
  • 金额:
    $ 46.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

Project Summary The objective of this project is to demonstrate feasibility of a novel platform technology using ultrasonic waves for wireless powering and bidirectional real-time communication of a left ventricular assist device (LVAD). Heart failure (HF) has become a challenge of epidemic proportions to the healthcare system in the United States with poor prognosis for patients and elevated healthcare costs. LVADs are standard surgical therapy for advanced HF patients refractory to medical management. Despite extensive training and daily care, LVAD recipients still experience driveline infections (14-28%) at an annual cost of $20,000 and represents a clinically- significant adverse event and one of the primary causes of death. Transcutaneous energy transmission systems (TETS) are being developed to eliminate the LVAD’s driveline. Currently, TETS technology is limited by (1) low energy transfer efficiency, (2) power loss due to coil misalignment, (3) reduced data transmission rates with increasing depth of penetration, and (4) heating of tissue. Bionet Sonar’s software-defined ultrasonic wide band (UsWB) proprietary technology is capable of transmitting energy and data via ultrasonic waves through tissue, bone, and fluids at penetration depths significantly greater than RF waves and with greater reliability. Since increasing energy efficiency results in reduced energy storage requirements UsWB also enables reduction in size of implantable technologies. Bionet’s UsWB TETS (UTET) system includes: (1) energy transfer portal with internal and external intelligent piezo array-surfaces, (2) implantable controller with energy storage capacity, (3) external controller with IoMT portal, and (4) wearable power supply. These elements will enable wireless LVAD operation over wide range of clinical conditions with real-time data acquisition and diagnostics. Proof-of-concept for Bionet’s core technology was tested in vitro, demonstrating superior data transmission compared to RF (700kHz, 180kbit/s, 20cm tissue depth) and ultrasonic wireless recharging. In this Phase I study, feasibility of the fully-integrated wireless, UTET system for LVAD support will be demonstrated by completing the following specific aims: Specific Aim 1: Design and fabricate fully-integrated UTET system and demonstrate feasibility with clinical- grade LVAD in an in vitro model that mimics clinically-relevant implantable tissue depths and geometries. Specific Aim 2: Demonstrate feasibility of the fully-integrated UTET system with clinical-grade LVAD in an acute bovine model (n=2) at flow rates of 1-5 L/min for up to 8 hours. This proposal leverages the strengths of Bionet and the Cardiovascular Innovation Institute. Our long-term goal is to successfully translate the Bionet’s UTET system into clinical practice. The core platform technology may also be applied to other networked systems for the treatment of diverse etiologies opening a new frontier in multimodal patient treatment and use of Artificial Intelligence for patient care.
项目摘要 该项目的目的是证明使用超声波的新型平台技术的可行性 用于无线供电和左心室辅助设备(LVAD)的双向实时通信。 心力衰竭(HF)已成为美国医疗体系的流行比例的挑战 患者预后不良,医疗保健费用升高。 LVAD是标准的手术疗法 高级HF患者对医疗管理的难治性。尽管进行了广泛的培训和日常护理,LVAD还是 接收者仍然经历传动系统感染(14-28%),年费用为20,000美元,代表临床上 - 重大不良事件和死亡的主要原因之一。经牙能源传输系统 (TET)正在开发以消除LVAD的传动系统。目前,TET技术受(1)低限制 能源传递效率,(2)由于线圈未对准而引起的功率损失,(3)降低数据传输速率 渗透深度的增加和(4)组织加热。 Bionet Sonar的软件定义的超声波宽带(USWB)专有技术能够传输 通过超声波通过组织,骨骼和流体在穿透深度上的能量和数据显着 大于RF波,具有更大的可靠性。由于提高能源效率会导致降低 储能需求USWB还可以减少可植入技术的尺寸。 bionet的 USWB TET(UTET)系统包括:(1)带有内部和外部智能压电的能量传输门户 阵列曲面,(2)具有储能容量的植入控制器,(3)带有IOMT门户的外部控制器, (4)可穿戴电源。这些元素将使无线LVAD运行在广泛的范围内 具有实时数据获取和诊断的临床条件。 Bionet核心技术的概念验证 在体外测试,与RF相比表明数据传输优越(700kHz,180kbit/s,20厘米组织 深度)和超声波无线充电。在此阶段I研究中,完全集成无线的可行性, 通过完成以下特定目的,将证明用于LVAD支持的UTET系统: 特定目标1:设计和制造完全集成的UTET系统,并证明可行性 在体外模型中,LVAD级LVAD模仿临床上与植入的组织深度和几何形式。 具体目标2:证明具有临床级LVAD的完全集成UTET系统的可行性 急性牛模型(n = 2)以1-5 L/min的流速长达8小时。 该提议利用了Bionet和心血管创新研究所的优势。我们的长期目标 是成功地将Bionet的UTET系统转化为临床实践。核心平台技术可能 还将应用于其他网络系统,以治疗潜水员的病因 多模式的患者治疗和人工智能用于患者护理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jorge Hernan Jimenez其他文献

Jorge Hernan Jimenez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jorge Hernan Jimenez', 18)}}的其他基金

Enabling of a Wireless and Remotely Monitored Deep Brain Stimulation System through the Internet of Medical Things for Parkinson's Disease Patients
通过医疗物联网为帕金森病患者启用无线和远程监控的深部脑刺激系统
  • 批准号:
    9908204
  • 财政年份:
    2019
  • 资助金额:
    $ 46.9万
  • 项目类别:
Apical Access System with Universal Connector for Beating Heart LVAD Implantation
带有用于跳动心脏 LVAD 植入的通用连接器的心尖接入系统
  • 批准号:
    8454767
  • 财政年份:
    2013
  • 资助金额:
    $ 46.9万
  • 项目类别:
Apical Access System with Universal Connector for Beating Heart LVAD Implantation
带有用于跳动心脏 LVAD 植入的通用连接器的心尖接入系统
  • 批准号:
    8627238
  • 财政年份:
    2013
  • 资助金额:
    $ 46.9万
  • 项目类别:

相似海外基金

Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
  • 批准号:
    10724048
  • 财政年份:
    2023
  • 资助金额:
    $ 46.9万
  • 项目类别:
Merging artificial intelligence (AI) and pharmacometrics to elucidate gene-drug interactions linked to clopidogrel responsiveness in Caribbean Hispanic patients
融合人工智能 (AI) 和药理学,阐明与加勒比西班牙裔患者氯吡格雷反应相关的基因药物相互作用
  • 批准号:
    10626448
  • 财政年份:
    2023
  • 资助金额:
    $ 46.9万
  • 项目类别:
Hemostasis, Hematoma Expansion, and Outcomes After Intracerebral Hemorrhage
脑出血后的止血、血肿扩张和结果
  • 批准号:
    10598712
  • 财政年份:
    2022
  • 资助金额:
    $ 46.9万
  • 项目类别:
Deep-CDS: Deep Learning Semantic Data Lake for Clinical Decision Support
Deep-CDS:用于临床决策支持的深度学习语义数据湖
  • 批准号:
    10546333
  • 财政年份:
    2022
  • 资助金额:
    $ 46.9万
  • 项目类别:
Enhanced Metadata Design, Architecture, and Learning (MeDAL) for Development of Generalizable Deep Learning-based Predictive Analytics from Electronic Health Records
增强元数据设计、架构和学习 (MeDAL),用于根据电子健康记录开发基于深度学习的通用预测分析
  • 批准号:
    10610420
  • 财政年份:
    2022
  • 资助金额:
    $ 46.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了