Mechanisms and functions of repressive chromatin structure in quiescent cells.
静止细胞中抑制性染色质结构的机制和功能。
基本信息
- 批准号:10002245
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAppearanceBase PairingBasic ScienceBindingBiochemicalBioinformaticsBiological AssayBiological ModelsCRISPR/Cas technologyCellsChIP-seqChromatinChromatin LoopChromatin ModelingChromatin StructureComplexDNADataElectron MicroscopyEnhancersFiberFoundationsFred Hutchinson Cancer Research CenterGene ClusterGenesGenetic DiseasesGenetic TranscriptionGenomicsHistone DeacetylationHistonesHumanInstitutesKnowledgeLinkMagnetismMalignant NeoplasmsMapsMentorsMethodsMicroscopyModelingMolecular ConformationNucleosomesPhysical condensationPhysiologicalPositioning AttributeProcessRepressionResearchResearch PersonnelResearch TrainingResolutionRoleSaccharomyces cerevisiaeStructureSupervisionSystemTestingTrainingTranscriptional RegulationUrsidae FamilyWorkYeastsanticancer researchcancer cellcancer drug resistancecancer therapycareercohesincondensindevelopmental diseaseelectron tomographyenzyme structureexperimental studygene repressiongenome-widehuman diseaseinterestnanometerpromotersingle moleculeskillsthree dimensional structuretranscription factor
项目摘要
Project Summary
The conformation of chromatin is a primary mechanism by which the cell regulates DNA-templated
processes. Consistent with this broad role, aberrations in the enzymes and structural components responsible
for controlling chromatin dynamics have been linked to an extensive range of human diseases, including the
majority of cancers and an increasing number of genetic and developmental disorders. Recent technological
advancements have increased our knowledge of how the positions of nucleosomes on DNA are regulated and
how chromatin forms large three-dimensional (3D) loops called chromatin domains. 3D chromatin structure is
hypothesized to be capable of both promoting and inhibiting transcription depending on context. However,
understanding the mechanisms and functions of these types of chromatin structures has been difficult due to
the low resolution of current methods, which have made it almost impossible to determine chromatin structure
within cells at scales necessary to determine its relationship to the expression of single-genes. As a result, the
long-held hypothesis that 3D chromatin structure at this level regulates transcription has been largely untested
in a physiological context. To examine 3D chromatin structure in cells in which it is expected to function
extensively, the candidate has implemented a genomics method capable of mapping 3D chromatin structure
genome-wide at unprecedented single-nucleosome 150 base pair resolution in quiescent S. cerevisiae.
Quiescent yeast bear conserved hallmarks of quiescent cells, in particular widespread transcriptional
repression and chromatin condensation, which make them an excellent model for determining the mechanisms
by which 3D chromatin structure represses transcription. Preliminary results have led to the hypothesis that in
quiescent cells, the condensin complex represses transcription by inducing quiescence-specific 3D chromatin
structures. Aim 1 of this proposal will determine how condensin is targeted to form chromatin domains during
quiescence using genomics, microscopy, and a single-molecule magnetic tweezer assay. Aim 2 will examine
the conformation of chromatin within domains to determine if it is folded into 3D structure at a smaller scale
and investigate whether chromatin structure at this scale is the mechanism by which transcription is repressed
during quiescence. The mentored component of this work will be completed under the sponsorship of Dr.
Toshio Tsukiyama, an expert in the chromatin field, at one of the premier institutes for basic science and
cancer research, the Fred Hutchinson Cancer Research Center. The candidate will also be trained in single-
molecule biochemical assays under the supervision of Dr. Sue Biggins, and will expand her proficiency in
bioinformatics through coursework and independent study. This research and training will provide the
candidate with an exciting model system and the skills necessary for a successful independent career.
项目摘要
染色质的构象是一种主要机制
过程。与这种广泛的作用,酶的畸变和负责的结构成分一致
用于控制染色质动力学已与广泛的人类疾病有关,包括
大多数癌症以及越来越多的遗传和发育障碍。最近的技术
进步已经提高了我们对核小体在DNA中的位置的了解,并
染色质如何形成称为染色质结构域的大型三维(3D)环。 3D染色质结构是
假设能够根据上下文促进和抑制转录。然而,
由于了解这些类型的染色质结构的机制和功能很困难
当前方法的低分辨率,这几乎无法确定染色质结构
在细胞内的尺度中,确定其与单生成表达的关系所必需的。结果,
长期以来的假设是,在此级别调节转录的3D染色质结构已在很大程度上未经测试
在生理环境中。在细胞中检查3D染色质结构,预计会发挥作用
广泛地,候选人实施了能够绘制3D染色质结构的基因组学方法
在静态的S. cerevisiae中,在前所未有的单核体150碱基对分辨率下,全基因组在全基因组中。
静态酵母菌熊保守的静态细胞的标志,特别是广泛的转录
抑制和染色质凝结,这使它们成为确定机制的绝佳模型
3D染色质结构抑制转录。初步结果导致了以下假设
静态细胞,冷凝蛋白复合物通过诱导静止特异性3D染色质抑制转录
结构。该提案的目的1将决定如何将凝蛋白靶向以形成染色质结构域
使用基因组学,显微镜和单分子磁性镊子测定法。 AIM 2将检查
染色质在域内的构象,以确定它是否以较小的比例折叠成3D结构
并研究该量表的染色质结构是否是抑制转录的机制
在静止期间。这项工作的指导部分将在博士的赞助下完成。
Toshio Tsukiyama是染色质领域的专家,位于基础科学的一所主要机构和
癌症研究,弗雷德·哈钦森癌症研究中心。候选人还将接受单一培训
在Sue Biggins博士的监督下,分子生化测定
通过课程和独立研究的生物信息学。这项研究和培训将为
具有令人兴奋的模型系统的候选人以及成功独立职业所需的技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Grace Swygert其他文献
Sarah Grace Swygert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Grace Swygert', 18)}}的其他基金
Mechanisms and functions of repressive chromatin structure in quiescent cells.
静止细胞中抑制性染色质结构的机制和功能。
- 批准号:
10542996 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Mechanisms and functions of repressive chromatin structure in quiescent cells.
静止细胞中抑制性染色质结构的机制和功能。
- 批准号:
10551901 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Mechanisms and functions of repressive chromatin structure in quiescent cells.
静止细胞中抑制性染色质结构的机制和功能。
- 批准号:
9805730 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
The effect of local inter-nucleosomal interactions and chromatin remodeling on in vivo chromatin fiber folding
局部核小体间相互作用和染色质重塑对体内染色质纤维折叠的影响
- 批准号:
9325353 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Privacy-Aware Federated Learning for Breast Cancer Risk Assessment
用于乳腺癌风险评估的隐私意识联合学习
- 批准号:
10742425 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
AIDen: An AI-empowered detection and diagnosis system for jaw lesions using CBCT
AIDen:使用 CBCT 的人工智能驱动下颌病变检测和诊断系统
- 批准号:
10383494 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
3D Image Analysis Software for Breast Reconstruction Surgical Planning, Outcome Assessment & Clinical Consultation
用于乳房重建手术规划、结果评估的 3D 图像分析软件
- 批准号:
10484568 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别: