Data and Information Integration for Risk Prediction in the Era of Big Data
大数据时代的数据与信息融合风险预测
基本信息
- 批准号:10021609
- 负责人:
- 金额:$ 43.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedBig DataBiological MarkersBreast Cancer Risk FactorCalibrationClinical ResearchCommunitiesDataData SetEnsureEstrogensEvaluationFeasibility StudiesFruitGestational DiabetesGoalsHormonalIndividualLogistic RegressionsLogisticsMalignant NeoplasmsMeasuresMethodsModelingOutcomePatientsPlaguePopulationPublicationsResearch DesignRiskSamplingSampling StudiesSourceStatistical MethodsTarget PopulationsTimeValidationbasebiomarker evaluationbreast densitycase controlcost effectivedesigndisorder preventionepidemiology studyflexibilityimprovedinnovationmetabolomicsmodel buildingnoveloutcome predictionprecision medicinepredictive modelingpredictive testrisk prediction modeluser friendly software
项目摘要
Abstract
Toward precision medicine and precision disease prevention, the overarching goal of this proposal is to
develop innovative statistical methods for accurate risk prediction. We address three challenges that
plague studies on the value of candidate risk predictors that adds to established predictors for improved
predictive accuracy: there is often a lack of independent validation data, the source population for the
study sample and the target population of prediction are often different, no statistical methods are
currently available for developing risk prediction models using individually-matched case-control data,
and there is a lack of statistical methods for helping assess study feasibility beyond standard power
calculation for testing predictor-outcome association. On the other hand, data and information that are
external to the study may well exist and can be exploited to alleviate these challenges. For example, a
model with only standard predictors often exists and has been validated, and the distribution of standard
risk predictors in the target population of prediction is often available. We propose that external data and
information can be exploited to address the above-mentioned challenges for candidate predictor
evaluation, and develop innovative statistical methods to bring this idea to fruition. Considering
prediction of a binary outcome, we propose a novel method to building logistic prediction models that are
guaranteed to calibrate well in the target population, an innovative method for risk prediction with
individually matched case-control data, and a method to project the added value of candidate predictors to
help assess study feasibility. Our methods, accompanied by user-friendly software, will facilitate cost
effective and timely predictor evaluation for predicting binary outcomes. Our methods were motivated by
and will be applied to several PI Chen's collaborative studies.
抽象的
为了实现精准医疗和精准疾病预防,该提案的总体目标是
开发创新的统计方法以进行准确的风险预测。我们解决三个挑战
关于候选风险预测因子价值的鼠疫研究,这些研究增加了已建立的预测因子以改善
预测准确性:通常缺乏独立的验证数据、预测的来源人群
研究样本和预测的目标人群往往不同,没有统计方法
目前可用于使用单独匹配的病例对照数据开发风险预测模型,
并且缺乏统计方法来帮助评估超出标准功效的研究可行性
用于测试预测结果关联的计算。另一方面,数据和信息
研究之外的因素很可能存在,并且可以用来缓解这些挑战。例如,一个
仅具有标准预测变量的模型通常存在并已得到验证,并且标准预测变量的分布
风险预测因子在目标人群中的预测往往是可用的。我们建议外部数据和
可以利用信息来解决候选预测器的上述挑战
评估,并开发创新的统计方法来实现这一想法。考虑到
预测二元结果,我们提出了一种构建逻辑预测模型的新方法,该模型是
保证在目标人群中得到很好的校准,这是一种创新的风险预测方法
单独匹配的病例对照数据,以及一种将候选预测变量的附加值投影到
帮助评估研究可行性。我们的方法加上用户友好的软件将有助于降低成本
用于预测二元结果的有效且及时的预测器评估。我们的方法的动机是
并将应用于陈皮的多项合作研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinbo Chen其他文献
Jinbo Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinbo Chen', 18)}}的其他基金
Data and Information Integration for Risk Prediction in the Era of Big Data
大数据时代的数据与信息融合风险预测
- 批准号:
10480872 - 财政年份:2019
- 资助金额:
$ 43.47万 - 项目类别:
Data and Information Integration for Risk Prediction in the Era of Big Data
大数据时代的数据与信息融合风险预测
- 批准号:
10249251 - 财政年份:2019
- 资助金额:
$ 43.47万 - 项目类别:
Precision Assessment and Delivery of Cancer Risks in BRCA 1/2 Mutation Cancers
BRCA 1/2 突变癌症的癌症风险的精确评估和传递
- 批准号:
10228006 - 财政年份:2017
- 资助金额:
$ 43.47万 - 项目类别:
Enhancing Global Diversity in Cancer Clinical Genetics
增强癌症临床遗传学的全球多样性
- 批准号:
10164921 - 财政年份:2017
- 资助金额:
$ 43.47万 - 项目类别:
Precision Assessment and Delivery of Cancer Risks in BRCA 1/2 Mutation Cancers
BRCA 1/2 突变癌症的癌症风险的精确评估和传递
- 批准号:
9762870 - 财政年份:2017
- 资助金额:
$ 43.47万 - 项目类别:
Precision Assessment and Delivery of Cancer Risks in BRCA 1/2 Mutation Cancers
BRCA 1/2 突变癌症的癌症风险的精确评估和传递
- 批准号:
9381396 - 财政年份:2017
- 资助金额:
$ 43.47万 - 项目类别:
Precision Assessment and Delivery of Cancer Risks in BRCA 1/2 Mutation Cancers
BRCA 1/2 突变癌症的癌症风险的精确评估和传递
- 批准号:
9567099 - 财政年份:2017
- 资助金额:
$ 43.47万 - 项目类别:
Statistical Methods for Cancer Absolute Risk Prediction
癌症绝对风险预测的统计方法
- 批准号:
8503712 - 财政年份:2013
- 资助金额:
$ 43.47万 - 项目类别:
Statistical Methods for Cancer Absolute Risk Prediction
癌症绝对风险预测的统计方法
- 批准号:
8619604 - 财政年份:2013
- 资助金额:
$ 43.47万 - 项目类别:
Statistical Methods for Cancer Absolute Risk Prediction
癌症绝对风险预测的统计方法
- 批准号:
9052041 - 财政年份:2013
- 资助金额:
$ 43.47万 - 项目类别:
相似国自然基金
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
- 批准号:82301139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
万寿菊黄酮通过MAPK/Nrf2-ARE通路缓解肉鸡肠道氧化应激损伤的作用机制
- 批准号:32302787
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
- 批准号:32303021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
- 批准号:82373030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Air Pollution, Multidimensional Behavior, and Neuroimaging in Children with Neurodevelopmental Disorders
空气污染、多维行为和神经发育障碍儿童的神经影像学
- 批准号:
10644622 - 财政年份:2023
- 资助金额:
$ 43.47万 - 项目类别:
Risk and protective factors for Black youth suicide and suicidal ideation and behaviors
黑人青少年自杀以及自杀意念和行为的风险和保护因素
- 批准号:
10664624 - 财政年份:2023
- 资助金额:
$ 43.47万 - 项目类别:
Development of personalized healthy food incentives to improve diet and cardiovascular risk
制定个性化健康食品激励措施以改善饮食和心血管风险
- 批准号:
10663538 - 财政年份:2023
- 资助金额:
$ 43.47万 - 项目类别:
Mitigating effects of telehealth uptake on disparities in maternal care access, quality, outcomes, and expenditures during the COVID-19 pandemic
减轻 COVID-19 大流行期间远程医疗的采用对孕产妇护理获取、质量、结果和支出差异的影响
- 批准号:
10523364 - 财政年份:2022
- 资助金额:
$ 43.47万 - 项目类别:
Big Data Digital Outreach and Epidemiology Methods for HIV Care among Communities of Color
有色人种社区艾滋病毒护理的大数据数字推广和流行病学方法
- 批准号:
10619830 - 财政年份:2022
- 资助金额:
$ 43.47万 - 项目类别: