Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
基本信息
- 批准号:10021672
- 负责人:
- 金额:$ 34.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressAffectAffinityAllosteric RegulationAspartateBackBehaviorBindingBiochemicalBiologicalBiologyCarbamoyl TransferasesCell physiologyCellsCharacteristicsChemicalsChemistryChorismate MutaseCommunicationComputing MethodologiesCrystallizationDataDissectionDistalDistantDrug DesignEnzymesEventExhibitsFeedbackGoalsHemoglobinKnowledgeLabelLifeLigand BindingLigandsLinkMeasuresMechanicsMetabolismMethodologyMethodsMolecular ConformationMonitorMovementNMR SpectroscopyNaturePathway interactionsPharmaceutical PreparationsProcessProtein EngineeringProteinsProtomerRegulationRelaxationResearchResolutionRoleSamplingSignal TransductionSiteStructural ModelsStructureSystemThermodynamicsTryptophanTyrosineWorkYeastsanalogbiophysical techniqueschemical synthesiscomputer studiesconformational conversioncrosslinkdesigndimerdrug developmentdrug discoveryenzyme activityenzyme structurehuman diseaseinhibitor/antagonistmolecular dynamicsnovelprogramspromoterprotein functionprotein structureresponsesmall moleculetooltryptophyltyrosineunnatural amino acids
项目摘要
Abstract
Allosteric regulation of protein activity is a physico-mechanical phenomenon that underlies the coordination of
cellular events throughout biology. Signal transduction, metabolism, and other essential cellular processes are
completely reliant on the executions of conformational and dynamic changes that enable allosteric proteins to
communicate between distant sites. To understand such biological mechanisms – and by extension to
understand how to rationally alter cellular processes, either with drugs or protein engineering – is to understand
this fundamental problem of how allosteric regulation works. Yet, even though allosteric regulation has been
recognized for decades and despite the recent realization that dynamics contributes to allostery, our
understanding of allosteric mechanism is still at a rudimentary level. One limitation has been that the roles of
dynamics in allostery have been drawn from just a few systems, most of which lack the classic indicators of
functional allostery. Another limitation is that gaining accurate information on functional dynamics is
experimentally challenging. To identify basic working principles of allostery, mechanisms of allosteric behavior
must be observed in proteins that are “strongly allosteric”, where allosteric movements and signatures will be
more easily identified. In the long term, knowledge of allosteric mechanism will enhance protein research in
general and have a huge positive impact on design of allosteric drugs and allosteric proteins. The focus of this
work will be on the allosteric enzyme chorismate mutase (CM). By all considerations, this enzyme appears to be
ideal for high-resolution dissective studies of its allosteric mechanisms. CM is a canonical allosteric enzyme as
evidenced by a number of characteristics: it is a symmetric dimer with active sites separated by 40 Å; it
undergoes T-to-R conformational transitions; it exhibits homotropic allostery (Hill coefficient = 1.6); and it exhibits
heterotropic allostery with small molecule effectors that modulate activity up (by Trp) or down (by Tyr). CM is 60
kDa which makes it amenable to solution NMR studies, and it is extremely soluble and durable and yields
outstanding quality NMR spectra. The rich allosteric characteristics of CM will allow classical allostery to be
examined experimentally using NMR and other biochemical and biophysical methods (including computations)
in unprecedented detail. In this proposal, Aims 1 and 2 employ NMR, computational methods, and chemical
synthesis to characterize the structural and dynamic features of apo and liganded states of CM in solution. The
responses of CM to binding effectors and a transition state analog will be monitored, all towards the goal of
identification of mechanisms of heterotropic long-range communication. Aim 3 is focused on extending a novel
labeling methodology for monitoring mechanisms of homotropic allostery. “Click” chemistry will be used to
covalently and specifically tether CM promoters together to stabilize samples used for studying the elusive singly
ligated state. This approach will be useful for NMR studies of protein dimers in general.
抽象的
蛋白质活性的变构调节是一种物理机械现象,是协调
整个生物学中的细胞事件。
完全依赖于构象和动态变化的执行,使变构蛋白能够
理解这样的生物机制——并延伸至远程站点之间的通信。
了解如何通过药物或蛋白质工程合理地改变细胞过程——就是了解
然而,尽管变构调节已经被解决,但变构调节如何发挥作用这一根本问题。
几十年来,尽管最近认识到动力学有助于变构,但我们的
对变构机制的理解仍处于初级水平,一个限制是其作用。
变构动力学仅从少数几个系统中得出,其中大多数缺乏经典的指标
功能变构的另一个限制是获得功能动力学的准确信息。
确定变构的基本工作原理和变构行为机制具有实验挑战性。
必须在“强变构”的蛋白质中观察到,其中变构运动和特征将是
从长远来看,变构机制的知识将加强蛋白质研究。
一般并对变构药物和变构蛋白的设计产生巨大的积极影响。
工作将集中在变构酶分支酸变位酶(CM)上。综合考虑,这种酶似乎是。
CM 是一种典型的变构酶,非常适合对其变构机制进行高分辨率剖析研究。
有许多特征可以证明:它是一种对称二聚体,活性位点间隔 40 Å;
经历 T 到 R 构象转变;它表现出同向变构(希尔系数 = 1.6);
具有上调(通过色氨酸)或下调(通过酪氨酸)活性的小分子效应子的异向变构为 60。
kDa,这使得它适合溶液核磁共振研究,并且它具有极强的可溶性和耐用性,并且产率
CM 丰富的变构特征将使经典变构成为可能。
使用核磁共振和其他生物化学和生物物理方法(包括计算)进行实验检查
在该提案中,目标 1 和 2 采用了 NMR、计算方法和化学方法。
合成来表征溶液中 APO 的结构和动态特征以及 CM 的配体状态。
将监测 CM 对结合效应器和过渡态类似物的反应,所有这些都是为了实现以下目标:
目标 3 的重点是扩展一种新颖的异向性远程通信机制。
“点击”化学将用于
共价且特异性地将 CM 启动子连接在一起,以稳定用于单独研究难以捉摸的样本
这种方法对于一般蛋白质二聚体的 NMR 研究很有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew L Lee其他文献
Prostate Specific Antigen Doubling Time
前列腺特异性抗原倍增时间
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
P. Arlen;F. Bianco;W. Dahut;A. D'Amico;W. Figg;S. Freedland;J. Gulley;P. Kantoff;M. Kattan;Andrew L Lee;M. Regan;O. Sartor - 通讯作者:
O. Sartor
Utility of the percentage of positive prostate biopsies in predicting PSA outcome after radiotherapy for patients with clinically localized prostate cancer.
前列腺活检阳性百分比在预测临床局限性前列腺癌患者放疗后 PSA 结果中的效用。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
U. Selek;Andrew L Lee;L. Levy;D. Kuban - 通讯作者:
D. Kuban
Andrew L Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew L Lee', 18)}}的其他基金
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
- 批准号:
10653812 - 财政年份:2022
- 资助金额:
$ 34.83万 - 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
- 批准号:
10338723 - 财政年份:2022
- 资助金额:
$ 34.83万 - 项目类别:
Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能的机制和动力学
- 批准号:
10691713 - 财政年份:2022
- 资助金额:
$ 34.83万 - 项目类别:
Request for a 500 MHz NMR console and nitrogen-cooled cryoprobe
请求 500 MHz NMR 控制台和氮冷冷冻探头
- 批准号:
10440662 - 财政年份:2022
- 资助金额:
$ 34.83万 - 项目类别:
Equipment Supplement to Mechanisms and dynamics of allosteric function in proteins
蛋白质变构功能机制和动力学的设备补充
- 批准号:
10669454 - 财政年份:2022
- 资助金额:
$ 34.83万 - 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
- 批准号:
10372370 - 财政年份:2019
- 资助金额:
$ 34.83万 - 项目类别:
Structural and Dynamic Mechanisms in Classical Protein Allostery
经典蛋白质变构的结构和动力学机制
- 批准号:
10216306 - 财政年份:2019
- 资助金额:
$ 34.83万 - 项目类别:
Dynamic Networks and Mechanisms of Allosteric Communication in Proteins
蛋白质变构通讯的动态网络和机制
- 批准号:
7933132 - 财政年份:2009
- 资助金额:
$ 34.83万 - 项目类别:
The role of dynamics in enzyme mechanism and allostery
动力学在酶机制和变构中的作用
- 批准号:
9979900 - 财政年份:2008
- 资助金额:
$ 34.83万 - 项目类别:
Intra- and Intermolecular Dynamics of Dihydrofolate Reductase
二氢叶酸还原酶的分子内和分子间动力学
- 批准号:
7749030 - 财政年份:2008
- 资助金额:
$ 34.83万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 34.83万 - 项目类别:
Molecular Mechanisms that Control mRNA Decapping in Biological Condensates
控制生物浓缩物中 mRNA 脱帽的分子机制
- 批准号:
10577994 - 财政年份:2023
- 资助金额:
$ 34.83万 - 项目类别:
Actions of spiropyrimidinetriones against bacterial type II topoisomerases
螺嘧啶三酮对细菌 II 型拓扑异构酶的作用
- 批准号:
10750473 - 财政年份:2023
- 资助金额:
$ 34.83万 - 项目类别:
Novel Therapeutics for Heart Failure: Modified, Water-Soluble Caveolin-1 Scaffolding Domain Peptides with Improved Characteristics for Drug Development
心力衰竭的新型疗法:修饰的水溶性 Caveolin-1 支架结构域肽,具有改进的药物开发特性
- 批准号:
10599654 - 财政年份:2023
- 资助金额:
$ 34.83万 - 项目类别:
Modulating Fibrinolysis Dynamics by Leveraging Multivalent Avidity to Control Enzyme Activity
通过利用多价亲和力控制酶活性来调节纤维蛋白溶解动力学
- 批准号:
10635496 - 财政年份:2023
- 资助金额:
$ 34.83万 - 项目类别: