Staphylococcus aureus Survival During Nutrient Restriction and Suppression of Host Immunity.
营养限制和宿主免疫抑制期间金黄色葡萄球菌的存活。
基本信息
- 批准号:10047411
- 负责人:
- 金额:$ 44.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:ADP ribosylationAddressAffectAnabolismAntibiotic ResistanceAntioxidantsBacteriaBypassCommunitiesCoupledDependenceDevelopmentEnvironmentEnzymesGenerationsGlycineGoalsGrantGrowthHomeostasisImmuneImmune responseImmunityIncidenceInfectionInfectious Skin DiseasesInnate Immune ResponseKnowledgeLigandsLigaseLinkLipidsLuciferasesMacrophage ActivationMechanicsMediatingMediator of activation proteinMetabolicMetabolic PathwayMetabolismMixed Function OxygenasesMorbidity - disease rateMultienzyme ComplexesMusNADPH DehydrogenaseNatural ImmunityNitrogenNosocomial InfectionsNutrientNutritionalOxidation-ReductionOxidative StressOxidoreductaseOxygenPathway interactionsPrevalenceProcessProductionProteinsPublic HealthPyruvate Dehydrogenase ComplexRegulationResistanceRoleSepsisSirtuinsSiteSkinStaphylococcus aureusStaphylococcus aureus infectionSystemSystemic infectionTLR1 geneTherapeuticThioctic AcidTissuesUnited StatesVirulenceVirulentWorkbacterial metabolismbiological adaptation to stresscell killingcofactorcytokinedesignfitnessimmune activationimprovedin vivointraperitonealmacrophagemortalitymutantnew therapeutic targetnovelnovel therapeuticsnovel vaccinespathogenpreventrecruitrelease factorresponsetreatment strategy
项目摘要
Project Summary
Staphylococcus aureus (Sa) is a leading cause of nosocomial infection in the United States and is a predominant
pathogen in communities. Treatment of Sa infections is complicated by the prevalence of antibiotic resistant and
highly virulent clones, making new therapeutic alternatives a necessity. Sa survives during infection by
subverting immune defenses and adapting to host-imposed nutrient restriction. Yet, we lack a unifying
understanding of these adaptations to the host environment, which complicates the development of new
therapeutics and vaccines. We recently discovered that a cofactor required for metabolic enzyme complex
function and potent antioxidant, lipoic acid (LA), is a critical mediator of Sa growth and survival during infection.
Furthermore, we found that Sa releases the lipoylated E2 subunit of the metabolic enzyme complex pyruvate
dehydrogenase to blunt protective innate immune responses via its LA moiety. Thus, our work has uncovered a
mechanism of Sa survival during infection that links bacterial metabolism and nutrient acquisition to defense
against innate immunity. Despite establishing these roles for LA biosynthesis and salvage in Sa pathobiology,
there exist major gaps in our understanding of the mechanics of how LA blunts immunity and promotes optimal
metabolism during infection. Notably: (i) the precise mechanism by which bacterial LA-protein blunts immune
activation has not been elucidated; (ii) regulation of LA distribution on essential metabolic enzymes is not
understood; (iii) the role of LA in mediating defense against oxidative stress has not been investigated; and (iv)
the relevance of LA acquisition to survival in different infection sites is not understood. This renewal application
will address these gaps in knowledge by ascertaining precisely how LA subverts immunity and the mechanics of
LA synthesis/salvage that promote bacterial survival in vivo with the potential to lay the groundwork for new
targeted therapeutics. Aim 1 will determine how bacterial-derived LA blunts immune responses. Aim 2 will
determine how Sa regulates LA salvage and distribution. Aim 3 will investigate how accessibility to host nutrients
in different tissues determines the requirement for LA during infection.
项目概要
金黄色葡萄球菌 (Sa) 是美国医院内感染的主要原因,也是主要的致病菌
社区中的病原体。 Sa 感染的治疗因抗生素耐药性和耐药性的普遍存在而变得复杂
高毒力的克隆,使得新的治疗替代方案成为必要。 Sa在感染期间存活下来
破坏免疫防御并适应宿主施加的营养限制。然而,我们缺乏一个统一的
了解这些对宿主环境的适应,这使得新的开发变得复杂
疗法和疫苗。我们最近发现代谢酶复合物所需的辅因子
硫辛酸 (LA) 具有功能和有效的抗氧化剂,是感染期间 Sa 生长和存活的关键介质。
此外,我们发现 Sa 释放代谢酶复合物丙酮酸的硫辛酸化 E2 亚基
脱氢酶通过其 LA 部分减弱保护性先天免疫反应。因此,我们的工作揭示了一个
Sa在感染期间的生存机制将细菌代谢和营养获取与防御联系起来
对抗先天免疫。尽管在 Sa 病理学中确立了 LA 生物合成和挽救的这些作用,
我们对 LA 如何削弱免疫力和促进最佳状态的机制的理解存在重大差距
感染期间的新陈代谢。值得注意的是:(i) 细菌 LA 蛋白削弱免疫的精确机制
激活尚未阐明; (ii) LA 分布对必需代谢酶的调节不是
明白了; (iii) LA 在介导氧化应激防御中的作用尚未得到研究; (四)
LA 获得与不同感染部位生存的相关性尚不清楚。本次续签申请
将通过准确确定洛杉矶如何破坏免疫力以及其机制来解决这些知识空白
LA 合成/回收可促进细菌在体内的存活,并有可能为新的药物奠定基础
靶向治疗。目标 1 将确定细菌来源的 LA 如何减弱免疫反应。目标2将
确定 Sa 如何监管 LA 的回收和分配。目标 3 将研究宿主营养物质的可及性
不同的组织决定了感染期间对 LA 的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis Alonzo其他文献
Francis Alonzo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis Alonzo', 18)}}的其他基金
2022 International Conference on Gram Positive Pathogens
2022年革兰氏阳性病原体国际会议
- 批准号:
10539629 - 财政年份:2022
- 资助金额:
$ 44.59万 - 项目类别:
Intercellular Communication and Pheromone Maturation in Gram-Positive Bacteria.
革兰氏阳性细菌的细胞间通讯和信息素成熟。
- 批准号:
10153696 - 财政年份:2020
- 资助金额:
$ 44.59万 - 项目类别:
Intercellular Communication and Pheromone Maturation in Gram-Positive Bacteria.
革兰氏阳性细菌的细胞间通讯和信息素成熟。
- 批准号:
10388364 - 财政年份:2020
- 资助金额:
$ 44.59万 - 项目类别:
Intercellular Communication and Pheromone Maturation in Gram-Positive Bacteria.
革兰氏阳性细菌的细胞间通讯和信息素成熟。
- 批准号:
10616714 - 财政年份:2020
- 资助金额:
$ 44.59万 - 项目类别:
Intercellular Communication and Pheromone Maturation in Gram-Positive Bacteria.
革兰氏阳性细菌的细胞间通讯和信息素成熟。
- 批准号:
10025778 - 财政年份:2020
- 资助金额:
$ 44.59万 - 项目类别:
Intercellular Communication and Pheromone Maturation in Gram-Positive Bacteria.
革兰氏阳性细菌的细胞间通讯和信息素成熟。
- 批准号:
10634044 - 财政年份:2020
- 资助金额:
$ 44.59万 - 项目类别:
Staphylococcus aureus Survival During Nutrient Restriction and Suppression of Host Immunity.
营养限制和宿主免疫抑制期间金黄色葡萄球菌的存活。
- 批准号:
10576867 - 财政年份:2016
- 资助金额:
$ 44.59万 - 项目类别:
Staphylococcus aureus Survival During Nutrient Restriction and Suppression of Host Immunity.
营养限制和宿主免疫抑制期间金黄色葡萄球菌的存活。
- 批准号:
10634196 - 财政年份:2016
- 资助金额:
$ 44.59万 - 项目类别:
Staphylococcus aureus Survival During Nutrient Restriction and Suppression of Host Immunity.
营养限制和宿主免疫抑制期间金黄色葡萄球菌的存活。
- 批准号:
10368013 - 财政年份:2016
- 资助金额:
$ 44.59万 - 项目类别:
Staphylococcus aureus Survival During Nutrient Restriction and Suppression of Host Immunity
营养限制和宿主免疫抑制期间金黄色葡萄球菌的存活
- 批准号:
9121678 - 财政年份:2016
- 资助金额:
$ 44.59万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
New insights into extracellular signal transduction
细胞外信号转导的新见解
- 批准号:
10566506 - 财政年份:2023
- 资助金额:
$ 44.59万 - 项目类别:
Therapeutic targeting of Wnt signaling in cancer
癌症中 Wnt 信号传导的治疗靶向
- 批准号:
10584306 - 财政年份:2022
- 资助金额:
$ 44.59万 - 项目类别:
The non-catalytic function of PARP2 in DNA repair and cancer therapy
PARP2在DNA修复和癌症治疗中的非催化功能
- 批准号:
10641934 - 财政年份:2022
- 资助金额:
$ 44.59万 - 项目类别:
Co-Regulation of Alternative Lengthening of Telomeres and Chromatin Dynamics in ATRX-DAXX deficient cancer cells
ATRX-DAXX 缺陷癌细胞中端粒选择性延长和染色质动态的共同调节
- 批准号:
10440845 - 财政年份:2022
- 资助金额:
$ 44.59万 - 项目类别: