Stimulation of Ribosomal Frameshifting by Cotranslational Membrane Protein Folding and Misfolding
共翻译膜蛋白折叠和错误折叠刺激核糖体移码
基本信息
- 批准号:10032886
- 负责人:
- 金额:$ 31.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AlphavirusBase SequenceBindingBiochemicalBiochemistryCellsChloride ChannelsComplexCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDefectDelta F508 mutationDevelopmentDiseaseElementsEquilibriumFDA approvedFaceFeedbackGeneticHumanHydrophobicityIntegral Membrane ProteinInvestigationLinkLipid BindingMaintenanceMapsMeasuresMechanicsMediatingMembraneMembrane ProteinsMolecularMolecular ChaperonesMolecular ConformationMutationPathogenicityPharmaceutical PreparationsPlayPolyproteinsPotential EnergyPropertyProtein AnalysisProtein BiosynthesisProteinsProteomeQuality ControlRNAReactionRibosomal FrameshiftingRibosomesRoleSeriesSindbis VirusSiteStimulusStressStructural ModelsStructureTestingTherapeuticTranslational RegulationTranslationsTransmembrane DomainWorkbaseconformational conversionexperimental studyimprovedinsightknowledge basemechanical forcemolecular modelingmutation screeningnovelpolypeptideprematurepreventprotein degradationprotein foldingprotein misfoldingproteostasisproteotoxicityresponsesmall moleculetranscriptomevirology
项目摘要
ABSTRACT
The proteostasis network relies on numerous feedback mechanisms to strike a balance between the rates of
protein synthesis and degradation, which is crucial for the maintenance of protein homeostasis. Proper tuning of
the rate of protein synthesis is also critical for the fidelity of cotranslational protein folding, which requires
coordination between the ribosome and various molecular chaperones. This translational regulation is especially
important for the fidelity of membrane protein (MP) biosynthesis, as the disruption of translational dynamics
appears to coincide with cotranslational misfolding and premature degradation. Nevertheless, it is currently
unclear how the translational machinery detects and responds to the cotranslational MP misfolding. In a recent
study of the topological properties of the Sindbis virus (SINV) structural polyprotein, our team found that the
translocon-mediated membrane integration of the nascent polypeptide stimulates ribosomal frameshifting and
the premature termination of translation. This work revealed that cotranslational (mis)folding can alter translation
through programmed ribosomal frameshifting (PRF), which is typically viewed as an RNA-mediated translational
recoding mechanism. In the following, we outline evidence suggesting translocon-mediated PRF occurs during
the translation of many human MPs, including several misfolding-prone MPs such as the cystic fibrosis
transmembrane conductance regulator (CFTR). We provide multiple lines of evidence that demonstrate that PRF
can occur at several “checkpoints” during CFTR synthesis, and show that a pathogenic mutation known to induce
cotranslational misfolding (ΔF508) stimulates ribosomal frameshifting and the premature termination of CFTR
translation. Based on these findings, we hypothesize that PRF sites allow the ribosome to tune the processivity
of translation in response to conformational transitions in the nascent chain. To test this hypothesis, we will
assess how mutations and small molecules that alter cotranslational CFTR folding impacts the processivity of
translation at each PRF site. To gain structural insights into this ribosomal frameshifting mechanism, we will also
extend our studies on the SINV structural polyprotein. To map the sequence constraints of translocon-mediated
PRF, we measured the effects of 2,003 mutations on the efficiency of ribosomal frameshifting by deep mutational
scanning. Our preliminary results reveal several structural features that appear to be critical for PRF, including
a putative lipid-binding face within a nascent transmembrane domain and a helical segment within the ribosomal
exit tunnel. To determine how these structural features induce PRF, we propose a novel fusion of molecular
modeling, cellular biochemistry, and virology experiments to elucidate these structural features. Finally, we will
leverage these insights to develop sequence-based energetic predictions for the efficiency of PRF within integral
MPs. We will also characterize putative PRF sites in several disease-linked MPs in order to validate these
findings and explore the potential role of PRF in MP homeostasis. Together, these investigations will provide
fundamental insights into a novel cotranslational feedback mechanism and the molecular basis of disease.
抽象的
Proteostasis网络依靠多种反馈机制来取得平衡
蛋白质合成和降解,这对于维持蛋白质稳态至关重要
蛋白质合成的速率对于需要旋晶的共转移的保真度至关重要,这需要
核糖体和各种分子伴侣之间的配位。
对于膜蛋白(MP)生物合成的保真度很重要,作为转化动力学的破坏
似乎与共转运的错误折叠和过早降解相吻合。
尚不清楚转化机械如何检测和响应惯用的MP
Sindbis病毒(SINV)结构多蛋白的拓扑特性的研究,我们的团队发现了您
新生多肽的转运介导的膜整合刺激核糖体帧速率和
翻译的终止。
通过编程的核糖体框架(PRF),通常被视为RNA介导的翻译
记录机制。
许多人类国会议员的翻译,包括闭经率高的国会议员,例如囊性firosis
跨膜电导调节剂(CFTR)。
在CFTR合成过程中可能发生在几个“检查点”,并表明一种致病性诱导
共转运错误折叠(ΔF508)刺激核糖体框架和CFTR的预终止
翻译。根据发现,我们假设PRF站点允许Ribosis调整摄影。
响应新生链中的同意转变的翻译。
评估改变共透明CFTR折叠的突变和小分子如何影响
在每个PRF位点进行翻译。
扩展我们对SINV结构蛋白的研究。
PRF,我们测量了2,003个突变对深突变的核糖体移状效率的影响
扫描。
新生的跨膜结构域内的假定脂质结合面和核糖体内的螺旋段
出口隧道。确定结构特征如何诱导PRF
建模,细胞生物化学和病毒学实验,以阐明这些诱因。
利用Thesights为Prfin积分的有效性开发基于序列的能量预测
MPS。
调查结果并探索PRF在MP稳态中的潜在作用。
对新颖的共晶反馈机制和疾病的分子基础的基本见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Patrick Schlebach其他文献
Jonathan Patrick Schlebach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Patrick Schlebach', 18)}}的其他基金
Stimulation of Ribosomal Frameshifting by Cotranslational Membrane Protein Folding and Misfolding
共翻译膜蛋白折叠和错误折叠刺激核糖体移码
- 批准号:
10536635 - 财政年份:2021
- 资助金额:
$ 31.99万 - 项目类别:
Stimulation of Ribosomal Frameshifting by Cotranslational Membrane Protein Folding and Misfolding
共翻译膜蛋白折叠和错误折叠刺激核糖体移码
- 批准号:
10334403 - 财政年份:2021
- 资助金额:
$ 31.99万 - 项目类别:
Topological Energetics and the Cellular Quality Control of Integral Membrane Proteins
完整膜蛋白的拓扑能量学和细胞质量控制
- 批准号:
10220073 - 财政年份:2018
- 资助金额:
$ 31.99万 - 项目类别:
Topological Energetics and the Cellular Quality Control of Integral Membrane Proteins
完整膜蛋白的拓扑能量学和细胞质量控制
- 批准号:
10437748 - 财政年份:2018
- 资助金额:
$ 31.99万 - 项目类别:
Structural Basis for the Partitioning of C99 into Liquid-Ordered Membrane Domains
C99 划分为液序膜域的结构基础
- 批准号:
8856220 - 财政年份:2014
- 资助金额:
$ 31.99万 - 项目类别:
Structural Basis for the Partitioning of C99 into Liquid-Ordered Membrane Domains
C99 划分为液序膜域的结构基础
- 批准号:
8717279 - 财政年份:2014
- 资助金额:
$ 31.99万 - 项目类别:
相似国自然基金
DNA物理性质的分子动力学模拟和第一原理计算
- 批准号:90203013
- 批准年份:2002
- 资助金额:21.0 万元
- 项目类别:重大研究计划
中国大陆果蝇D.nasuta亚群分子进化和生殖行为的研究
- 批准号:39670395
- 批准年份:1996
- 资助金额:12.0 万元
- 项目类别:面上项目
犬C-yes致癌基因的序列分析
- 批准号:39570554
- 批准年份:1995
- 资助金额:9.0 万元
- 项目类别:面上项目
我国中华按蚊物种分化及区域分布的研究
- 批准号:39570647
- 批准年份:1995
- 资助金额:8.5 万元
- 项目类别:面上项目
从碱基序列的变化探讨水稻抗菌基因家族的进化
- 批准号:39270054
- 批准年份:1992
- 资助金额:5.0 万元
- 项目类别:面上项目
相似海外基金
Project 5: Pandemic Virus Helicase Inhibitors
项目5:大流行病毒解旋酶抑制剂
- 批准号:
10522814 - 财政年份:2022
- 资助金额:
$ 31.99万 - 项目类别:
Project 5: Pandemic Virus Helicase Inhibitors
项目5:大流行病毒解旋酶抑制剂
- 批准号:
10674237 - 财政年份:2022
- 资助金额:
$ 31.99万 - 项目类别:
Stimulation of Ribosomal Frameshifting by Cotranslational Membrane Protein Folding and Misfolding
共翻译膜蛋白折叠和错误折叠刺激核糖体移码
- 批准号:
10536635 - 财政年份:2021
- 资助金额:
$ 31.99万 - 项目类别:
Stimulation of Ribosomal Frameshifting by Cotranslational Membrane Protein Folding and Misfolding
共翻译膜蛋白折叠和错误折叠刺激核糖体移码
- 批准号:
10334403 - 财政年份:2021
- 资助金额:
$ 31.99万 - 项目类别:
Investigating the Antiviral Role of STING During Enteric RNA Virus Infection in Drosophila
研究 STING 在果蝇肠道 RNA 病毒感染过程中的抗病毒作用
- 批准号:
10003008 - 财政年份:2019
- 资助金额:
$ 31.99万 - 项目类别: