Critical Care Informatics
重症监护信息学
基本信息
- 批准号:10020401
- 负责人:
- 金额:$ 39.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAccident and Emergency departmentAddressAdmission activityAdoptionAdultArchivesBostonCaringClinicalClinical DataClinical ResearchCodeCollaborationsCommunicationCommunitiesComputer softwareCountryCredentialingCritical CareCritical IllnessDataData CollectionData SetData SourcesDatabasesDevelopmentDiagnostic radiologic examinationDiseaseEducational workshopElectronic Health RecordFundingGuidelinesHealthcareHome environmentHospitalsImageIndustryInformaticsInfrastructureInstitutionIntensive CareIntensive Care UnitsInternationalInterventionInvestigationIsraelJointsKnowledgeLaboratoriesLicensingLinkLondonMedicalMedical TechnologyMedical centerModificationOperating RoomsParis, FrancePatient CarePatientsPerformancePharmaceutical TechnologyPhysiologicalPhysiologyPopulationProcessReproducibilityResearchResearch Project GrantsResolutionResourcesRetrospective StudiesStandardizationTechnologyThoracic RadiographyUnited StatesUniversitiesUpdateValidationaccess restrictionsbaseclinical careclinical databaseclinical decision supportdata archivedata harmonizationdata modelingdata resourcedata sharingdata standardseducation resourcesevidence basehealth dataimprovedinternational centeronline courseopen sourceprediction algorithmrepositoryresearch studystructured datasuccesssupport toolssymposiumtooltreatment effectunstructured data
项目摘要
Abstract
Critical care units are home to some of the most sophisticated patient technology within hospitals. The result-
ing data have the potential to improve our understanding of disease and to improve clinical care. Critically ill
patients are an ideal population for clinical database investigations because the value of many treatments and
interventions they receive remains largely unproven, and high-quality studies supporting or discouraging specific
practices are relatively sparse [4]. Standardized critical care guidelines currently in use are dependent on an
evidence base that is surprisingly weak considering the amount of data generated in the ICU [13].
The MIT Laboratory for Computational Physiology (LCP) developed and maintains the publicly available
Medical Information Mart for Intensive Care (MIMIC), containing highly detailed data associated with 53,423
distinct adult ICU admissions at the Beth Israel Deaconess Medical Center in Boston [21]. MIMIC is now a
widely used resource worldwide for clinical research studies, exploratory and validation analyses performed by
pharmaceutical and medical technology companies, as well as for university, conference and online courses,
tutorials and workshops.
LCP recently released the open eICU Collaborative Research Database [24] in collaboration with Philips
Healthcare, comprising de-identified clinical data associated with approximately 200,000 critical care admissions
to over two hundred hospitals throughout the United States. We now intend to expand the success of our
open-access, open-source approach to critical care research by releasing large new intra-operative, emergency
department and imaging datasets. Importantly, we have made exciting progress with the global consortium our
group is spearheading around the development of high resolution critical care databases. With our assistance,
colleagues at Oxford, London, Paris, Sao Paulo, Madrid, and Beijing have made significant progress in building
their own versions of MIMIC and transforming them into the OMOP common data model.
Multi-center research is challenging, because different institutions collect and store data in (sometimes dras-
tically) different formats. The adoption and harmonization of data standards is a critical requirement in order for
the data to be properly archived, integrated across institutions, and shared for reuse.
This proposal seeks funding to: (a) support and expand our publicly available critical care data resources into
new domains including pre-ICU care in the ED and OR, and serial chest X-ray imaging; b) develop the technical
infrastructure needed to integrate data from international critical care units; and c) conduct research aimed at
understanding and addressing the complexities of using multicenter and federated datasets in the development
of predictive and clinical decision support tools, as well as in observational retrospective studies.
抽象的
重症监护病房是医院内一些最复杂的患者技术的所在地。结果 -
ING数据有可能提高我们对疾病的理解并改善临床护理。批判性
患者是临床数据库调查的理想人群,因为许多治疗的价值和
他们接受的干预措施在很大程度上尚未得到证实,并且高质量的研究支持或灰心
实践相对稀疏[4]。当前正在使用的标准化重症监护指南取决于
考虑到ICU中产生的数据量,证据基础令人惊讶地较弱[13]。
MIT计算生理学实验室(LCP)开发并维护公开可用
重症监护(MIMIC)的医学信息MART,其中包含与53,423相关的高度详细数据
在波士顿的贝丝以色列执事医疗中心,独特的成人ICU入学[21]。模仿现在是
全球广泛使用的资源用于临床研究,探索性和验证分析。
制药和医疗技术公司以及大学,会议和在线课程,
教程和讲习班。
LCP最近与飞利浦合作发布了Open EICU合作研究数据库[24]
医疗保健,完成与大约200,000个重症监护招生相关的临床数据
全美的200多家医院。我们现在打算扩大我们的成功
通过释放大型新的术中紧急情况,开放式,开源方法进行重症监护研究
部门和成像数据集。重要的是,我们在全球财团中取得了令人兴奋的进步
小组围绕着高分辨率重症监护数据库的发展。在我们的协助下
牛津,伦敦,巴黎,圣保罗,马德里和北京的同事在建造方面取得了重大进展
他们自己的模仿版本并将其转换为OMOP共同数据模型。
多中心研究受到挑战,因为不同的机构收集和存储数据(有时Dras-
确实)不同的格式。采用和协调数据标准是至关重要的要求
数据要正确存档,整合到机构中并共享以进行重复使用。
该提案寻求资金:(a)支持和扩展我们公开可用的重症监护数据资源
新领域,包括ED和OR中的ICU护理,以及串行的胸部X射线成像; b)开发技术
基础设施需要整合来自国际重症监护单位的数据; c)进行针对的研究
了解和解决在开发中使用多中心和联合数据集的复杂性
预测性和临床决策支持工具以及观察性回顾性研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leo Anthony G Celi其他文献
Leo Anthony G Celi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leo Anthony G Celi', 18)}}的其他基金
MUST Data Science Research Hub (MUDSReH) - Democratized Trusted Research Environment (dTRE)
MUST 数据科学研究中心 (MUDSReH) - 民主化可信研究环境 (dTRE)
- 批准号:
10826921 - 财政年份:2021
- 资助金额:
$ 39.63万 - 项目类别:
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
- 批准号:
10312539 - 财政年份:2021
- 资助金额:
$ 39.63万 - 项目类别:
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
- 批准号:
10490315 - 财政年份:2021
- 资助金额:
$ 39.63万 - 项目类别:
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
- 批准号:
10678687 - 财政年份:2021
- 资助金额:
$ 39.63万 - 项目类别:
相似海外基金
NIDA Clinical Trials Network: New York Node
NIDA 临床试验网络:纽约节点
- 批准号:
10855627 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别:
NIDA Clinical Trials Network: New York Node - GY22 Integrating MOUD in Non-Medical Settings to Improve Treatment and Retention of Black/AA Persons
NIDA 临床试验网络:纽约节点 - GY22 在非医疗环境中整合 MOUD,以改善黑人/AA 人的治疗和保留
- 批准号:
10809985 - 财政年份:2023
- 资助金额:
$ 39.63万 - 项目类别:
NIDA Clinical Trials Network: New York Node
NIDA 临床试验网络:纽约节点
- 批准号:
10647100 - 财政年份:2022
- 资助金额:
$ 39.63万 - 项目类别:
A rapid blood test to aid the triage of patients affected by head injuries.
快速血液检测可帮助对头部受伤的患者进行分类。
- 批准号:
10009497 - 财政年份:2020
- 资助金额:
$ 39.63万 - 项目类别: