Gene Therapy for Diabetes
糖尿病基因治疗
基本信息
- 批准号:10017960
- 负责人:
- 金额:$ 72.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3&apos Untranslated RegionsAcinar CellAllogenicAlpha CellBar CodesBeta CellBinding SitesBiodistributionBioinformaticsBlood GlucoseCapsidCell TransplantationCellsChemicalsChronicClinicalDataDatabasesDependovirusDevelopmentDiabetes MellitusDirected Molecular EvolutionDiseaseDisease ManagementDoseDrug KineticsDuct (organ) structureDuctal Epithelial CellElementsEndocrineEndoderm CellEndoscopic Retrograde CholangiopancreatographyEnhancersEvolutionGastroenterologyGene DeliveryGene ExpressionGene Transduction AgentGeneral PopulationGenetic TranscriptionGoalsGrantHumanIn SituIndividualInjectionsInsulinInsulin-Dependent Diabetes MellitusIslet CellIslets of LangerhansLibrariesMacaca mulattaMediatingMethodsMicroRNAsMolecularMusNatural regenerationPancreasPancreatic ductPatientsPremature MortalityPrimatesProceduresPropertyReagentRegulatory ElementReporterReporter GenesRodentRouteSafetySiteSpecificityStructure of alpha Cell of isletSystemTechnologyTherapeuticTransplantationTropismVariantViral VectorVirusWorkadeno-associated viral vectoraptamerbasebeta cell replacementcell typeclinical applicationclinical translationdiabetes mellitus therapygene therapygenetic payloadhumanized mousein vivoinnovationisletmouse modelnonhuman primatenovelpre-clinicalpromoterside effectstem cellstranscription factortransduction efficiencytransgene expressionunnatural amino acidsvector
项目摘要
PROJECT SUMMARY
Two potential approaches exist for the replacement of the β-cells lost in type 1 diabetes (T1D). The first is to
transplant new β-cells derived from either allogeneic pancreas donors or stem cells. The second approach is to
generate new β-cells in situ in the T1D patient without any need for cell transplantation. This can be achieved
by transcription factor mediated reprogramming of endodermal cell types related to β-cells. Gene therapy
vectors are used to deliver the reprogramming factors.
We and others have recently found that it is possible to correct diabetes in mice by retrograde ductal
injection of reprogramming vectors. Intraductal delivery has the advantage of delivering a high dose of gene
therapy vector locally, minimizing systemic side effects and achieving a high local concentration of
reprogramming factors. Furthermore, this route of administration is readily feasible in humans, as ERCP
(endoscopic retrograde cholangio-pancreatography) is a routine procedure in clinical gastroenterology.
Preclinical work in rodents indicates that α-cells are the prime target for reprogramming, while
pancreatic ducts may also be converted to functional β-like cells.
In this proposal, we will develop AAV vectors that are optimized for reprogramming the α-cells of
humans and non-human primates to the β-cell fate after intraductal delivery. We are building on the progress
made in our current HIRN UC4 grant, in which we developed novel AAV capsids capable of transducing
human endocrine cells with high efficiency. We also evolved cis-regulatory elements (CREs) capable of
restricting transgene expression to only β-cells.
In Aim 1, we will produce novel AAV capsids (variants) that are highly efficient in transducing pancreatic
α-cells and duct cells after retrograde injection in non-human primates in vivo. Highly innovative capsid
evolution methods will be used. In Aim 2, we will generate CREs that direct transgene expression specifically
to the reprogramming target, i.e. α-cells. Cell-type specific promoters will be combined with microRNA
recognition elements to achieve this goal. Finally, in Aim 3, AAV capsids generated by Aim 1 and CREs
developed in Aim 2 will be combined to produce optimized AAV capable of delivering reprogramming factors to
α-cells and its capability of reprogramming will be assessed in non-human primates.
Successful execution of this work will generate the preclinical data needed to determine whether this
approach has potential for clinical application in humans.
项目摘要
在1型糖尿病中丢失的β细胞(T1D)中存在两种潜在方法。首先是
移植源自同种异体胰腺供体或干细胞的新β细胞。第二种方法是
在T1D患者的原位生成新的β细胞,而无需细胞移植。这可以实现
通过转录因子介导的与β细胞相关的内胚层细胞类型的重编程。基因疗法
向量用于传递重编程因子。
我们和其他人最近发现,可以通过逆行导管纠正小鼠中的糖尿病
注入重编程向量。导管内输送的优点是递送高剂量的基因
局部治疗载体,最大程度地减少全身副作用,并达到较高的局部浓度
重编程因素。此外,这种管理途径在人类中很容易可行,如ERCP
(内窥镜逆行胆管造影)是临床胃肠病学中的常规程序。
啮齿动物中的临床前工作表明α细胞是重编程的主要目标,而
胰管也可以转化为功能性β样细胞。
在此提案中,我们将开发用于重新编程的α细胞的AAV矢量
导管内递送后,人类和非人类素数。我们正在建立进步
在当前的hirn UC4赠款中,我们开发了能够转导的新型AAV Capsids
人体内分泌细胞高效率。我们还发展了能够
仅限于β细胞的转化表达。
在AIM 1中,我们将产生新颖的AAV Capsids(变体),它们在转导胰腺方面高效
体内非人类素数逆行注射后α细胞和导管细胞。高度创新的Capsid
将使用进化方法。在AIM 2中,我们将生成专门引导转换表达式的CRE
到重编程靶标,即α细胞。细胞类型的特定启动子将与microRNA结合
识别要素以实现这一目标。最后,在AIM 3中,AIM 1和CRES产生的AAV CAPSIDS
在AIM 2中开发的将结合使用,以产生优化的AAV,能够将重编程因素传递给
α细胞及其重新编程的功能将在非人类隐私中进行评估。
这项工作的成功执行将生成确定是否是否这样的临床前数据
方法具有在人类中临床应用的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Markus Grompe其他文献
Markus Grompe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Markus Grompe', 18)}}的其他基金
In vivo targeting of diabetes-relevant human cell types with rAAV vectors
rAAV 载体体内靶向糖尿病相关人类细胞类型
- 批准号:
8812513 - 财政年份:2014
- 资助金额:
$ 72.91万 - 项目类别:
相似海外基金
R21 MPI microRNA directed therapy for treating early stage pancreatic cancer
R21 MPI microRNA 定向疗法治疗早期胰腺癌
- 批准号:
10577609 - 财政年份:2023
- 资助金额:
$ 72.91万 - 项目类别: