NBCe1-mediated Regulation of HCO3- is a Novel Mechanism Underlying Metabolic Reprogramming and Cystogenesis
NBCe1 介导的 HCO3 调节是代谢重编程和细胞发生的新机制
基本信息
- 批准号:10017961
- 负责人:
- 金额:$ 4.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2022-03-29
- 项目状态:已结题
- 来源:
- 关键词:Acid-Base EquilibriumAdenylate CyclaseAdultApicalBasic ScienceBeta CellBicarbonatesBuffersCell physiologyCellsCellular Metabolic ProcessChemosensitizationClinical SciencesCodeComplement 3d ReceptorsCyclic AMPCyclic AMP-Dependent Protein KinasesCystDepressed moodDevelopmentDiabetes MellitusDistalDuct (organ) structureEnvironmentEtiologyEventExcretory functionFailureFunctional disorderGenesGlucoseGlycolysisGoalsHumanHyperglycemiaImpairmentIn VitroInflammationInsulinIntercalated CellKidneyKidney DiseasesLeadMEKsMaintenanceMediatingMediator of activation proteinMetabolicMetabolic PathwayMetabolic acidosisMetabolismMitochondriaModelingMusNephrologyNephronsNon-Insulin-Dependent Diabetes MellitusOutputPancreasPathway interactionsPhasePlayPolycystic Kidney DiseasesPositioning AttributePrevalenceProtein IsoformsRegulationResearchRoleSignal PathwaySignal TransductionStructure of beta Cell of isletTestingWorkcombatdiabeticglucose toleranceimprovedin vivoin vivo Modelinsulin secretionisletnon-diabeticnovelnovel strategiespH Homeostasispreservationpreventprogramssensorsolutetherapeutic evaluationtranscriptomicstreatment strategy
项目摘要
PROJECT SUMMARY/ABSTRACT
The loss of glucose-stimulated insulin secretion (GSIS) is a critical pathophysiological event precipitating
development of hyperglycemia in Type 2 diabetes mellitus (T2DM). Recent evidence suggests that loss of
GSIS in diabetes is associated with metabolic reprogramming toward reduced mitochondrial function; however
mechanisms underlying these observations remain largely unknown. Recent single cell transcriptomics studies
of human β-cells identified SLC4A4 as one of few unique genes highly expressed in T2DM β-cells and
repressed in non-diabetic β-cells. Slc4a4 encodes for Na+-nHCO3- cotransporter, NBCe1B in the pancreas and
plays a key role in regulating intracellular pH (pHi). Importantly, increased activation of NBCe1 has been
associated with enhanced intracellular glycolysis and impaired mitochondrial function suggesting it may
contribute to loss of GSIS and consequent development of T2DM. Preliminary dissertation studies support this
hypothesis and demonstrate that inhibition of NBCe1B activity in β-cells improves GSIS in vitro and enhances
glucose tolerance in vivo. These cumulative observations led us to develop a doctoral dissertation direction
with an overall objective to characterize the role of NBCe1B as a novel regulator of β-cell metabolism and
dysfunction in T2DM. Accordingly, Specific Aim 1 (F99) will test the hypothesis that β-cell dysfunction in T2DM
is driven by metabolic reprogramming mediated by cellular alkalization through activation of NBCe1B. Given
the critical role of NBCe1 in maintaining systemic pH homeostasis, the F99 uniquely positions me to elucidate
novel mechanisms associated with dysregulation of acid-base balance in the kidney during the K00 phase.
Specifically, the A-isoform of NBCe1 (NBCe1A) functions as the key mechanism of HCO3- reabsorption in the
kidney. Deletion of NBCe1A is associated with metabolic acidosis and cortical cysts within the collecting duct
(CD). Soluble adenylyl cyclase (sAC) has been identified as a HCO3- sensor within the CD. Previous work
demonstrated that impaired NBCe1A-mediated HCO3- reabsorption activates sAC-cAMP/PKA mediated
signaling. Interestingly, persistent cAMP/PKA activation within the CD has also been demonstrated to be a key
mediator of cyst development and proliferation in polycystic kidney disease (PKD). Therefore, the main
objective of my proposed postdoctoral research direction is to characterize the role of NBCe1A as a novel
regulator of cystogenesis through activation of sAC-cAMP/PKA signaling pathway. Accordingly, Specific Aim 2
(K00) will test the hypothesis that impaired NBCe1A-mediated HCO3- reabsorption activates a soluble adenylyl
cyclase-cAMP/PKA signaling cascade in the collecting duct promoting proliferation and cystogenesis in models
of PKD. Together, the F99 and K00 will propel me to achieve my long-term goal to lead an independent
research program in nephrology.
项目概要/摘要
葡萄糖刺激的胰岛素分泌(GSIS)的丧失是一个关键的病理生理学事件,可导致
2 型糖尿病 (T2DM) 中高血糖的发生最近的证据表明,
然而,糖尿病中的 GSIS 与线粒体功能降低的代谢重编程有关。
这些观察结果背后的机制在很大程度上仍然未知。
的人类 β 细胞确定 SLC4A4 是在 T2DM β 细胞中高表达的少数独特基因之一
在非糖尿病 β 细胞中,Slc4a4 编码 Na+-nHCO3- 协同转运蛋白、胰腺中的 NBCe1B。
NBCe1 在调节细胞内 pH (pHi) 中发挥着关键作用。
与细胞内糖酵解增强和线粒体功能受损有关,表明它可能
导致 GSIS 的丧失和随后的 T2DM 的发展,初步论文研究支持了这一点。
假设并证明抑制 β 细胞中 NBCe1B 活性可改善体外 GSIS 并增强
这些累积的观察结果引导我们制定了博士论文的方向。
总体目标是描述 NBCe1B 作为 β 细胞代谢的新型调节剂的作用,
因此,特定目标 1 (F99) 将检验 T2DM 中 β 细胞功能障碍的假设。
是由通过激活 NBCe1B 介导的细胞碱化代谢重编程驱动的。
NBCe1 在维持全身 pH 稳态中的关键作用,F99 使我能够独特地阐明
与 K00 期肾脏酸碱平衡失调相关的新机制。
具体来说,NBCe1 (NBCe1A) 的 A 同工型在 HCO3 重吸收中起着关键机制的作用。
NBCe1A 缺失与代谢性酸中毒和集合管内皮质囊肿有关。
(CD)。先前的工作已将可溶性腺苷酸环化酶 (sAC) 确定为 HCO3- 传感器。
证明 NBCe1A 介导的 HCO3 重吸收受损会激活 sAC-cAMP/PKA 介导的
CD 内隐式、持续的 cAMP/PKA 激活也被证明是一个关键。
因此,多囊肾病 (PKD) 中囊肿发育和增殖的介质。
我提出的博士后研究方向的目标是描述 NBCe1A 作为一种新型药物的作用
通过激活 sAC-cAMP/PKA 信号通路调节囊肿发生 因此,具体目标 2。
(K00) 将检验以下假设:NBCe1A 介导的 HCO3 重吸收受损会激活可溶性腺苷酸
集合管中的环化酶-cAMP/PKA信号级联促进模型中的增殖和囊肿发生
F99 和 K00 将共同推动我实现领导独立的长期目标。
肾脏病学研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Brown其他文献
Matthew Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Brown', 18)}}的其他基金
NBCe1-mediated Regulation of HCO3- is a Novel Mechanism Underlying Metabolic Reprogramming and Cystogenesis
NBCe1 介导的 HCO3 调节是代谢重编程和细胞发生的新机制
- 批准号:
10555519 - 财政年份:2022
- 资助金额:
$ 4.55万 - 项目类别:
NBCe1-mediated Regulation of HCO3- is a Novel Mechanism Underlying Metabolic Reprogramming and Cystogenesis
NBCe1 介导的 HCO3 调节是代谢重编程和细胞发生的新机制
- 批准号:
10598623 - 财政年份:2022
- 资助金额:
$ 4.55万 - 项目类别:
NBCe1-mediated Regulation of HCO3- is a Novel Mechanism Underlying Metabolic Reprogramming and Cystogenesis
NBCe1 介导的 HCO3 调节是代谢重编程和细胞发生的新机制
- 批准号:
9907503 - 财政年份:2019
- 资助金额:
$ 4.55万 - 项目类别:
相似国自然基金
腺苷酸环化酶ADCY3调控鸡肌内脂肪沉积的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腺苷酸环化酶ZmRPP13-LK3催化生成的cAMP在玉米耐高温胁迫中的作用机制解析
- 批准号:32171945
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
CUL3和ARIH1介导的腺苷酸环化酶异源敏化在吗啡依赖发生中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
灰霉菌腺苷酸环化酶调节光响应与致病性的机理研究
- 批准号:31972121
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
Ⅲ型腺苷酸环化酶介导肥胖和慢性痛共病的机制研究
- 批准号:
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
NBCe1-mediated Regulation of HCO3- is a Novel Mechanism Underlying Metabolic Reprogramming and Cystogenesis
NBCe1 介导的 HCO3 调节是代谢重编程和细胞发生的新机制
- 批准号:
10555519 - 财政年份:2022
- 资助金额:
$ 4.55万 - 项目类别:
NBCe1-mediated Regulation of HCO3- is a Novel Mechanism Underlying Metabolic Reprogramming and Cystogenesis
NBCe1 介导的 HCO3 调节是代谢重编程和细胞发生的新机制
- 批准号:
10598623 - 财政年份:2022
- 资助金额:
$ 4.55万 - 项目类别:
NBCe1-mediated Regulation of HCO3- is a Novel Mechanism Underlying Metabolic Reprogramming and Cystogenesis
NBCe1 介导的 HCO3 调节是代谢重编程和细胞发生的新机制
- 批准号:
9907503 - 财政年份:2019
- 资助金额:
$ 4.55万 - 项目类别:
Cellular and Neurochemical Mechanisms of REM Sleep
快速眼动睡眠的细胞和神经化学机制
- 批准号:
8247816 - 财政年份:1999
- 资助金额:
$ 4.55万 - 项目类别:
Cellular and Neurochemical Mechanisms of REM Sleep
快速眼动睡眠的细胞和神经化学机制
- 批准号:
7808798 - 财政年份:1999
- 资助金额:
$ 4.55万 - 项目类别: