Development of novel small molecule analgesics modulating the nNOS-NOS1AP protein-protein interaction
开发调节 nNOS-NOS1AP 蛋白-蛋白相互作用的新型小分子镇痛药
基本信息
- 批准号:10016857
- 负责人:
- 金额:$ 28.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptor Signaling ProteinAddressAffectAmericanAnalgesicsBehavioralBindingBiochemicalBiological AssayBiologyBrainBusinessesCellsChemicalsChemistryClinicClinical TrialsComplexDevelopmentDrug KineticsDrug TargetingExcretory functionExhibitsFormalinFreund&aposs AdjuvantFundingGoalsGrantHealthcare SystemsHigh PrevalenceHyperalgesiaIn VitroIndianaIschemic StrokeLeadLigationMaintenanceManuscriptsMediatingMembraneMetabolismModelingMultiprotein ComplexesN-Methyl-D-Aspartate ReceptorsN-MethylaspartateNOS1 geneNerve DegenerationNeuraxisNeuronsNitric Oxide Synthase Type INon-Steroidal Anti-Inflammatory AgentsOpioidPainPain managementParentsPathologic ProcessesPatientsPenetrationPeptidesPersistent painPharmaceutical ChemistryPharmaceutical PreparationsPhasePlasmaPre-Clinical ModelPropertyProteinsResearchRoleSafetySeriesSignal PathwaySignal TransductionSmall Business Innovation Research GrantSteroidsStrokeStructureStructure-Activity RelationshipSynapsesTherapeuticTherapeutic IndexToxic effectTreatment EfficacyTriageUnited StatesUniversitiesVentilatory DepressionWorkanalogbasecentral sensitizationchronic neurologic diseasechronic neuropathic painchronic paincostcost estimatedensitydesignefficacy testinggabapentinhealth care availabilityhigh throughput screeningimprovedin vivoin vivo Modelinhibitor/antagonistlead optimizationlead seriesmouse modelneuropsychiatrynovelpain behaviorpain modelpainful neuropathypatient subsetspre-clinicalpreventprogramsprotein protein interactionreceptorrecruitsafety studyscaffoldsciatic nerveside effectsmall moleculesmall molecule inhibitorsocioeconomicsstroke modeltool
项目摘要
Abstract
This application, “Development of novel small molecule analgesics modulating the nNOS-NOS1AP protein-
protein interaction,” addresses the critical need for more effective medications to treat chronic neuropathic pain
affecting ~116 million people in the United States. Current pain medications such as NSAIDS, steroids, opiates
and gabapentin analogs have documented and often severe side effects, are poorly effective in neuropathic
pain and provide adequate relief only in limited subsets of patients. Because of its high prevalence and poor
treatment options, chronic pain results in socioeconomic costs estimated at $560-635 billion annually in the
US. Activation of NMDA receptors (NMDARs) mediates central nervous system sensitization, which is
implicated in the development and maintenance of neuropathic pain. NMDA-mediated central sensitization
depends on formation of a multi-protein cascade complex at the receptor that includes post-synaptic density 95
protein (PSD95), neuronal nitric oxide synthase (nNOS) and NOS1 adaptor protein (NOS1AP). A peptide
disruptor of the NMDAR multi-protein complex is efficacious in preclinical stroke and pain models and is
currently in clinical trials for ischemic stroke. Small molecule inhibitors targeting this complex have the potential
to be effective analgesics without the side effects associated with broad inhibition of NMDARs. A direct
downstream effector of the NMDAR complex is nNOS-NOS1AP. A compound inhibiting this complex will likely
be efficacious against neuropathic pain, stroke and chronic neurological diseases precipitated or exacerbated
by excessive NMDAR activity. In the funded Phase I SBIR program, our team ran an extensive small molecule
high-throughput screen to identify inhibitors of the nNOS-NOS1AP protein-protein interaction. After
confirmation of activity, selectivity and initial administration-distribution-metabolism-excretion/toxicity (ADME/T)
studies on the top leads, we chose two drug-like, selective nNOS-NOS1AP inhibitors with distinct scaffolds for
in vivo studies. Both inhibitors are efficacious in pain models. We initiated a small chemistry effort on one
chemical series, identifying regions for selectivity and potency. In the current proposal, a traditional drug
medicinal chemistry approach will be used to design and develop novel analogs with improved
pharmacokinetic properties and potency compared to the parent compounds. Anagin and its research partners
at AMRI and Indiana University will advance at least one series through early lead optimization studies. In
addition to improving potency and ADME/T properties, we will demonstrate that the best analogs are acting on
the intended target in cells, validate their activity in two preclinical pain models and assess their safety profile in
key behavioral in vivo models. Compounds that do not meet our set criteria will not be advanced. We anticipate
that our lead compound would have a better therapeutic index than current pain medications. We have a team
of business, chemistry, biology and in vivo scientific experts in place to advance these series towards lead
optimization and into the clinic for the treatment of chronic neuropathic pain.
抽象的
该申请“开发调节 nNOS-NOS1AP 蛋白的新型小分子镇痛药 -
蛋白质相互作用”解决了对更有效的药物治疗慢性神经性疼痛的迫切需求
影响美国约 1.16 亿人的现有止痛药,如非甾体抗炎药 (NSAIDS)、类固醇、阿片类药物。
和加巴喷丁类似物已被记录,并且通常有严重的副作用,在神经病方面效果不佳
由于其患病率高且效果较差,因此只能在有限的患者亚群中缓解疼痛并提供足够的缓解。
治疗选择方面,慢性疼痛每年造成的社会经济成本估计为 560-6350 亿美元
NMDA 受体 (NMDAR) 的激活介导中枢神经系统敏化,即
参与 NMDA 介导的中枢敏化的发生和维持。
取决于受体处多蛋白级联复合物的形成,其中包括突触后密度 95
蛋白 (PSD95)、神经元一氧化氮合酶 (nNOS) 和 NOS1 接头蛋白 (NOS1AP)。
NMDAR 多蛋白复合物的干扰物在临床前中风和疼痛模型中有效,并且
目前正在针对缺血性中风的小分子抑制剂进行临床试验,该复合物具有潜力。
是有效的镇痛药,没有与广泛抑制 NMDAR A 相关的副作用。
NMDAR 复合物的下游效应子是 nNOS-NOS1AP,抑制该复合物的化合物可能会出现。
有效对抗神经性疼痛、中风和诱发或加剧的慢性神经系统疾病
在资助的第一阶段 SBIR 计划中,我们的团队进行了广泛的小分子研究。
高通量筛选以鉴定 nNOS-NOS1AP 蛋白质-蛋白质相互作用的抑制剂。
活性、选择性和初始给药-分布-代谢-排泄/毒性的确认(ADME/T)
在针对顶级先导化合物的研究中,我们选择了两种具有不同支架的药物样选择性 nNOS-NOS1AP 抑制剂
体内研究。这两种抑制剂对疼痛模型都有效。我们对其中一种进行了小型化学研究。
化学系列,确定选择性和效力的区域在当前的提案中,传统药物。
药物化学方法将用于设计和开发具有改进的新型类似物
与母体化合物 Anagin 及其研究合作伙伴相比的药代动力学特性和效力。
AMRI 和印第安纳大学将通过早期先导化合物优化研究推进至少一系列研究。
除了提高效力和 ADME/T 特性外,我们还将证明最好的类似物正在发挥作用
细胞中的预期目标,在两个临床前疼痛模型中验证其活性并评估其安全性
我们预计不符合我们设定标准的关键行为体内模型将不会被推进。
我们的先导化合物比目前的止痛药有更好的治疗指数。
商业、化学、生物学和体内科学专家的到位,推动这些系列走向领先
优化并进入临床用于治疗慢性神经性疼痛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHANIE K FLORIO其他文献
STEPHANIE K FLORIO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHANIE K FLORIO', 18)}}的其他基金
Discovery of PSD95 protein-protein interaction inhibitors as novel non-opioid analgesics
发现 PSD95 蛋白质-蛋白质相互作用抑制剂作为新型非阿片类镇痛药
- 批准号:
10602501 - 财政年份:2021
- 资助金额:
$ 28.61万 - 项目类别:
Discovery of PSD95 protein-protein interaction inhibitors as novel non-opioid analgesics
发现 PSD95 蛋白质-蛋白质相互作用抑制剂作为新型非阿片类镇痛药
- 批准号:
10569221 - 财政年份:2021
- 资助金额:
$ 28.61万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Increasing the Complexity of Microtubule-based transport: Cargo adaptors and Hitchhiking on Vesicles.
增加基于微管的运输的复杂性:货物适配器和囊泡搭便车。
- 批准号:
10713449 - 财政年份:2023
- 资助金额:
$ 28.61万 - 项目类别:
Regulation and feedback in Fat/Dachsous signaling
Fat/Dachsous 信号传导的调节和反馈
- 批准号:
10716713 - 财政年份:2023
- 资助金额:
$ 28.61万 - 项目类别:
Poldip2 and the Brain Endothelial Barrier Function: Understanding Mechanisms that Regulate the Blood Brain Barrier Integrity
Poldip2 和脑内皮屏障功能:了解调节血脑屏障完整性的机制
- 批准号:
10658239 - 财政年份:2023
- 资助金额:
$ 28.61万 - 项目类别:
Selective neuronal autophagy in phosphorylated tau degradation and Alzheimer's disease
选择性神经元自噬在磷酸化 tau 降解和阿尔茨海默病中的作用
- 批准号:
10675192 - 财政年份:2023
- 资助金额:
$ 28.61万 - 项目类别: