R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories

R18 闭环诊断:AHRQ R18 患者安全学习实验室

基本信息

  • 批准号:
    10015291
  • 负责人:
  • 金额:
    $ 61.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-30 至 2023-09-29
  • 项目状态:
    已结题

项目摘要

Abstract Diagnostic errors in primary care often are due to failures to follow up (“close the loop”) on diagnostic tests, referrals, and symptoms. More specifically, (1) diagnostic tests and referrals often are not completed, (2) results of diagnostic tests and referrals often are not conveyed to patients and their primary care physicians, and (3) primary care physicians frequently are not informed when symptoms evolve that could alter a diagnosis. To address these gaps, our multidisciplinary team of clinicians, systems engineers, and patients will use an engineering life cycle to design systems to decrease the number of associated diagnostic errors by preventing each of these types of failures in a large primary care practice. Our proposed research employs innovative evidenced-based system engineering (SE) methods to develop highly reliable and robust processes in other industries, but not yet widely adopted in healthcare. Our specific aims are as follows: (Aim 1) Design, develop, and refine highly reliable “closed loop” systems for diagnostic tests and referrals that ensure these occur within clinically- and patient-important timeframes; (Aim 2) Design, develop, and refine a highly reliable “closed loop” symptom monitoring system to ensure clinicians receive information about evolving symptoms of concern; and (Aim 3) Ensure broader generalizability of results of Aims 1 and 2 by ensuring these new processes are effective in a community health center in an underserved community, a large telemedicine system, and a representative range of simulated other health system settings and populations. Our research hypothesis is that a methodical systems approach to closing loops on diagnostic processes will measurably improve timely completion of ordered tests, referrals, and symptom reports, leading to reductions in diagnostic errors. Key innovations of our project are the use of high reliability and human factors methods, inclusion of patients and clinicians from other practices throughout the engineering process, and combined use of statistical, qualitative, and computer modeling methods to estimate improvements both in our primary site and more broadly. Projected results include increased completion of high-risk diagnostic tests, referrals, and concerning symptoms, in turn resulting in reduced diagnostic errors, negative health outcomes, and associated costs. Learning outcomes include improved understanding of closed loop diagnostic and monitoring problems in primary care, patient engagement in solutions to such problems, and the utility of systems engineering to important healthcare problems. Our project responds to 4 of the 8 Institute of Medicine recommendations from their Improving Diagnosis in Healthcare report, the President's Council of Advisors on Science and Technology recommendation that systems engineering be applied to primary care problems, and the PSLL solicitation emphases on value-based care, safety, patient engagement, and provider burden.
抽象的 初级保健中的诊断错误通常是由于诊断测试中未能跟进(“关闭循环”), 推荐和符号。更具体地说,(1)通常未完成诊断测试和转诊,(2) 诊断测试和转诊的结果通常不会传达给患者及其初级保健医生, (3)当症状进化时,初级保健医师经常不通知 诊断。为了解决这些差距,我们的临床医生,系统工程师和患者的多学科团队将 使用工程生命周期来设计系统,以减少相关诊断错误的数量 在大型初级保健实践中防止这些类型的失败。我们提出的研究员工 基于创新的基于证据的系统工程(SE)方法,以开发高度可靠和健壮的流程 在其他行业中,但尚未在医疗保健中广泛采用。我们的具体目的如下: (目标1)设计,开发和完善高度可靠的“闭环”系统,用于诊断测试和推荐 确保这些发生在临床和患者重要的时间范围内; (AIM 2)设计,开发和完善高度可靠的“闭环”症状监测系统,以确保 临床医生收到有关不断发展的关注符号的信息;和 (AIM 3)通过确保这些新过程为 在服务不足的社区,大型远程医疗系统和一个社区卫生中心有效 代表模拟其他卫生系统设置和人群的范围。 我们的研究假设是,在诊断过程中闭合循环的有条理的系统方法将 可衡量地提高有序测试,推荐和症状报告的及时完成,导致减少 在诊断错误中。我们项目的关键创新是使用高可靠性和人为因素方法, 在整个工程过程中,包括其他实践的患者和临床医生,并结合使用 统计,定性和计算机建模方法,以估算我们的主要网站中的改进 更广泛。预计的结果包括增加高危诊断测试,推荐和 关于症状,反过 费用。学习成果包括对闭环诊断和监视问题的了解得更好 在初级保健中,患者参与解决此类问题的解决方案以及系统工程的实用性 重要的医疗保健问题。我们对8个医学研究所建议中的4个提出的项目回应 他们在医疗保健报告中的诊断改进,总统科学技术顾问委员会 建议将系统工程应用于初级保健问题和PSLL阳性化 重点是基于价值的护理,安全性,患者参与和提供者伯恩(Burnen)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES C BENNEYAN其他文献

JAMES C BENNEYAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES C BENNEYAN', 18)}}的其他基金

Epidemic Surge Model Use to Improve Patient, Staff, and System Safety and Resiliency
使用流行病激增模型来提高患者、工作人员和系统的安全性和弹性
  • 批准号:
    10522738
  • 财政年份:
    2022
  • 资助金额:
    $ 61.15万
  • 项目类别:
Epidemic Surge Model Use to Improve Patient, Staff, and System Safety and Resiliency
使用流行病激增模型来提高患者、工作人员和系统的安全性和弹性
  • 批准号:
    10672985
  • 财政年份:
    2022
  • 资助金额:
    $ 61.15万
  • 项目类别:
R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories
R18 闭环诊断:AHRQ R18 患者安全学习实验室
  • 批准号:
    9904046
  • 财政年份:
    2019
  • 资助金额:
    $ 61.15万
  • 项目类别:
R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories
R18 闭环诊断:AHRQ R18 患者安全学习实验室
  • 批准号:
    10252794
  • 财政年份:
    2019
  • 资助金额:
    $ 61.15万
  • 项目类别:
R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories
R18 闭环诊断:AHRQ R18 患者安全学习实验室
  • 批准号:
    10488616
  • 财政年份:
    2019
  • 资助金额:
    $ 61.15万
  • 项目类别:
Model-Informed Understanding and Mitigation of the U.S. Opioid and Heroin Epidemic
对美国阿片类药物和海洛因流行病的模型知情理解和缓解
  • 批准号:
    9587080
  • 财政年份:
    2018
  • 资助金额:
    $ 61.15万
  • 项目类别:
OPTIMAL POLICIES FOR CLINICAL LAB QUALITY CONTROL
临床实验室质量控制的最佳政策
  • 批准号:
    2032151
  • 财政年份:
    1996
  • 资助金额:
    $ 61.15万
  • 项目类别:

相似国自然基金

根癌农杆菌激活AtuLigM以关闭致病程序的机制研究
  • 批准号:
    32300151
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
关闭矿井次生沉陷的时序InSAR精细监测与采空区参数反演研究
  • 批准号:
    42374020
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
关闭煤炭矿井地热储层时空演化特征及其长期能效评估
  • 批准号:
    52374147
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高水汽压亏缺下SlWRKY25调控SlAOS介导番茄叶片气孔关闭的作用机制
  • 批准号:
    32302649
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
茉莉酸和脱落酸信号协同调控虫害诱导番茄系统性气孔关闭的分子机制
  • 批准号:
    32302465
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
  • 批准号:
    2321862
  • 财政年份:
    2024
  • 资助金额:
    $ 61.15万
  • 项目类别:
    Cooperative Agreement
Flexible fMRI-Compatible Neural Probes with Organic Semiconductor based Multi-modal Sensors for Closed Loop Neuromodulation
灵活的 fMRI 兼容神经探针,带有基于有机半导体的多模态传感器,用于闭环神经调节
  • 批准号:
    2336525
  • 财政年份:
    2024
  • 资助金额:
    $ 61.15万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 61.15万
  • 项目类别:
    Standard Grant
Sustainable Sludge Valorisation Technology for Closed-Loop Resource Recovery
用于闭环资源回收的可持续污泥增值技术
  • 批准号:
    EP/Y02480X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.15万
  • 项目类别:
    Research Grant
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
  • 批准号:
    2338890
  • 财政年份:
    2024
  • 资助金额:
    $ 61.15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了