R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories
R18 闭环诊断:AHRQ R18 患者安全学习实验室
基本信息
- 批准号:10015291
- 负责人:
- 金额:$ 61.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2023-09-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract
Diagnostic errors in primary care often are due to failures to follow up (“close the loop”) on diagnostic tests,
referrals, and symptoms. More specifically, (1) diagnostic tests and referrals often are not completed, (2)
results of diagnostic tests and referrals often are not conveyed to patients and their primary care physicians,
and (3) primary care physicians frequently are not informed when symptoms evolve that could alter a
diagnosis. To address these gaps, our multidisciplinary team of clinicians, systems engineers, and patients will
use an engineering life cycle to design systems to decrease the number of associated diagnostic errors by
preventing each of these types of failures in a large primary care practice. Our proposed research employs
innovative evidenced-based system engineering (SE) methods to develop highly reliable and robust processes
in other industries, but not yet widely adopted in healthcare. Our specific aims are as follows:
(Aim 1) Design, develop, and refine highly reliable “closed loop” systems for diagnostic tests and referrals that
ensure these occur within clinically- and patient-important timeframes;
(Aim 2) Design, develop, and refine a highly reliable “closed loop” symptom monitoring system to ensure
clinicians receive information about evolving symptoms of concern; and
(Aim 3) Ensure broader generalizability of results of Aims 1 and 2 by ensuring these new processes are
effective in a community health center in an underserved community, a large telemedicine system, and a
representative range of simulated other health system settings and populations.
Our research hypothesis is that a methodical systems approach to closing loops on diagnostic processes will
measurably improve timely completion of ordered tests, referrals, and symptom reports, leading to reductions
in diagnostic errors. Key innovations of our project are the use of high reliability and human factors methods,
inclusion of patients and clinicians from other practices throughout the engineering process, and combined use
of statistical, qualitative, and computer modeling methods to estimate improvements both in our primary site
and more broadly. Projected results include increased completion of high-risk diagnostic tests, referrals, and
concerning symptoms, in turn resulting in reduced diagnostic errors, negative health outcomes, and associated
costs. Learning outcomes include improved understanding of closed loop diagnostic and monitoring problems
in primary care, patient engagement in solutions to such problems, and the utility of systems engineering to
important healthcare problems. Our project responds to 4 of the 8 Institute of Medicine recommendations from
their Improving Diagnosis in Healthcare report, the President's Council of Advisors on Science and Technology
recommendation that systems engineering be applied to primary care problems, and the PSLL solicitation
emphases on value-based care, safety, patient engagement, and provider burden.
抽象的
初级保健中的诊断错误通常是由于未能跟进(“闭环”)诊断测试而导致的,
更具体地说,(1) 诊断测试和转诊通常未完成,(2)
诊断测试和转诊的结果通常不会传达给患者及其初级保健医生,
(3) 当症状出现可能改变病情时,初级保健医生经常不会被告知
为了解决这些差距,我们的信徒、系统工程师和患者组成的多学科团队将
使用工程生命周期来设计系统,以减少相关诊断错误的数量
我们提出的研究采用了预防大型初级保健实践中的每一种失败的方法。
创新的循证系统工程 (SE) 方法可开发高度可靠且稳健的流程
在其他行业,但尚未在医疗保健领域广泛采用,我们的具体目标如下:
(目标 1)设计、开发和完善高度可靠的“闭环”系统,用于诊断测试和转诊
确保这些发生在对临床和患者重要的时间范围内;
(目标2)设计、开发和完善一个高度可靠的“闭环”症状监测系统,以确保
边境接收有关不断变化的关注症状的信息;以及
(目标 3)通过确保这些新流程得到满足,确保目标 1 和 2 的结果具有更广泛的普遍性
在服务不足的社区的社区卫生中心、大型远程医疗系统和
模拟其他卫生系统环境和人群的代表性范围。
我们的研究假设是,一种有条理的系统方法来关闭诊断过程的循环将
显着提高有序测试、转诊和症状报告的及时完成率,从而减少
我们项目的关键创新是使用高可靠性和人为因素方法,
在整个工程过程中纳入来自其他实践的患者和追随者,并结合使用
统计、定性和计算机建模方法来估计我们主站点的改进
更广泛地说,预计结果包括增加高风险诊断测试、转诊和完成率。
关注症状,进而减少诊断错误、负面健康结果和相关的
学习成本包括提高对闭环诊断和监控问题的理解。
在初级保健中,患者参与解决此类问题,以及系统工程的效用
我们的项目响应了医学研究所 8 项建议中的 4 项。
总统科学技术顾问委员会的《改善医疗保健诊断》报告
建议将系统工程应用于初级保健问题,以及 PSLL 征集
强调基于价值的护理、安全、患者参与和提供者负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES C BENNEYAN其他文献
JAMES C BENNEYAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES C BENNEYAN', 18)}}的其他基金
Epidemic Surge Model Use to Improve Patient, Staff, and System Safety and Resiliency
使用流行病激增模型来提高患者、工作人员和系统的安全性和弹性
- 批准号:
10522738 - 财政年份:2022
- 资助金额:
$ 61.15万 - 项目类别:
Epidemic Surge Model Use to Improve Patient, Staff, and System Safety and Resiliency
使用流行病激增模型来提高患者、工作人员和系统的安全性和弹性
- 批准号:
10672985 - 财政年份:2022
- 资助金额:
$ 61.15万 - 项目类别:
R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories
R18 闭环诊断:AHRQ R18 患者安全学习实验室
- 批准号:
9904046 - 财政年份:2019
- 资助金额:
$ 61.15万 - 项目类别:
R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories
R18 闭环诊断:AHRQ R18 患者安全学习实验室
- 批准号:
10252794 - 财政年份:2019
- 资助金额:
$ 61.15万 - 项目类别:
R18 Closed Loop Diagnostics : AHRQ R18 Patient Safety Learning Laboratories
R18 闭环诊断:AHRQ R18 患者安全学习实验室
- 批准号:
10488616 - 财政年份:2019
- 资助金额:
$ 61.15万 - 项目类别:
Model-Informed Understanding and Mitigation of the U.S. Opioid and Heroin Epidemic
对美国阿片类药物和海洛因流行病的模型知情理解和缓解
- 批准号:
9587080 - 财政年份:2018
- 资助金额:
$ 61.15万 - 项目类别:
OPTIMAL POLICIES FOR CLINICAL LAB QUALITY CONTROL
临床实验室质量控制的最佳政策
- 批准号:
2032151 - 财政年份:1996
- 资助金额:
$ 61.15万 - 项目类别:
相似国自然基金
关闭矿井次生沉陷的时序InSAR精细监测与采空区参数反演研究
- 批准号:42374020
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
茉莉酸和脱落酸信号协同调控虫害诱导番茄系统性气孔关闭的分子机制
- 批准号:32302465
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高水汽压亏缺下SlWRKY25调控SlAOS介导番茄叶片气孔关闭的作用机制
- 批准号:32302649
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
阿拉伯聚糖调控干旱胁迫诱导的香榧气孔关闭的作用机理
- 批准号:32371921
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
关闭矿井采空区煤岩-水-CO2溶解矿化多场耦合吸储机理
- 批准号:52374227
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
- 批准号:
2321862 - 财政年份:2024
- 资助金额:
$ 61.15万 - 项目类别:
Cooperative Agreement
Flexible fMRI-Compatible Neural Probes with Organic Semiconductor based Multi-modal Sensors for Closed Loop Neuromodulation
灵活的 fMRI 兼容神经探针,带有基于有机半导体的多模态传感器,用于闭环神经调节
- 批准号:
2336525 - 财政年份:2024
- 资助金额:
$ 61.15万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 61.15万 - 项目类别:
Standard Grant
Sustainable Sludge Valorisation Technology for Closed-Loop Resource Recovery
用于闭环资源回收的可持续污泥增值技术
- 批准号:
EP/Y02480X/1 - 财政年份:2024
- 资助金额:
$ 61.15万 - 项目类别:
Research Grant
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 61.15万 - 项目类别:
Continuing Grant