Neurobiology of the Circadian Clock
昼夜节律钟的神经生物学
基本信息
- 批准号:10705049
- 负责人:
- 金额:$ 32.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ARNTL geneAffectAgingAnimalsBehaviorBiologicalBiological ClocksBioluminescenceBrainCellsCircadian DysregulationCircadian RhythmsCluster AnalysisColorCre driverDiseaseExhibitsFeedbackFrequenciesGRP geneGene ActivationGene ExpressionGenerationsGenesGenetic TranscriptionGoalsHealthHourHumanHypothalamic structureImageInterventionKnowledgeLaboratoriesLateralLengthLightMediatingMembrane PotentialsMental DepressionMetabolic syndromeMethodsMolecularMood DisordersNeurobiologyNeuronal PlasticityNeuronsNeurosciencesOpsinPacemakersPeriodicityPeripheralPhasePhosphoric Monoester HydrolasesPhotoperiodPhysiologyProblem behaviorProcessPropertyRecording of previous eventsRecurrenceReportingResearchResolutionSchizophreniaSeasonsSignal PathwaySignal TransductionSleep DisordersSleep Wake CycleSpecificityStimulusSynapsesSystemTestingTimeTranslatingTranslationsVenusage relatedarmbehavioral plasticitycell typecircadiancircadian pacemakerexperimental studygenetic manipulationinsightknock-downmolecular clockneuralneural networknoveloptogeneticsresponsesleep abnormalitiessmall hairpin RNAsuprachiasmatic nucleustranscriptomics
项目摘要
PROJECT SUMMARY
A fundamental question in neuroscience is how changes in gene expression are translated into changes in
neuronal physiology, and ultimately into changes in behavior. The brain’s 24-hour timing mechanism, or
biological clock, is a system that is uniquely suited to the study of neural plasticity and the genes-to-behavior
problem. The neural network that generates and drives circadian rhythms in physiology and behavior is
located within the suprachiasmatic nuclei (SCN) of the hypothalamus. SCN neurons exhibit endogenous
circadian rhythms in spontaneous spike frequency, even as single cells in isolation, and within these neurons is
a defined network of “clock genes” that forms autoregulatory transcription/translation feedback loops (TTFLs)
to generate near 24-hour rhythms.
There are key gaps in our knowledge regarding the mechanisms of SCN entrainment and the pacemaker
plasticity it induces. Unlike rhythms generation, real-time dynamic SCN molecular and neural network
responses during entrainment have been previously un-observable, and thus knowledge is limited regarding
the actual dynamic topologies of entrainment at those levels. We have developed and instituted novel methods
enabling direct observation of SCN molecular and neural network entrainment topologies using an approach
that combines ChrimsonR optogenetic manipulation of clock neuron electrical activity with PER2::LUC real-
time reporting of clock gene activation (EX vivo CIrcadian Timing and Entrainment, EXCITE). EXCITE provides
precise timing, duration and intensity of recurring input stimulation to the isolated SCN, and tracks SCN clock
molecular rhythms at high temporal and spatial resolution for 3-5 weeks ex vivo. The isolated SCN in this
system strikingly recapitulates canonical features of circadian clock entrainment in intact animals, including
light-like phase responses with period after-effects, period matching and systematic phase angle differences to
stimuli that deviate from 24 hours, and differential entrainment to photoperiods with a minimum tolerable night.
We will use EXCITE to examine - (1) Molecular and Neural Network Topologies for SCN Entrainment and
Plasticity, (2) SCN Neural Network Topology of Entrainment, and (3) Molecular Mechanisms of Photoperiod-
Induced SCN Network Plasticity. Successful completion of these aims will provide novel insight into SCN
entrainment and plasticity - how the SCN molecular and neural networks are modified by light input to result in
behavioral plasticity. Defining the mechanisms by which the SCN encodes light history and photoperiod will
open the way for manipulation of SCN neural and transcriptional networks to ameliorate circadian disorders.
项目概要
神经科学的一个基本问题是基因表达的变化如何转化为
神经元生理学,并最终影响大脑的 24 小时计时机制,或者说。
生物钟是一个特别适合研究神经可塑性和基因行为的系统
产生并驱动生理和行为昼夜节律的神经网络是。
位于下丘脑视交叉上核 (SCN) 内的 SCN 神经元表现出内源性。
自发尖峰频率的昼夜节律,即使是孤立的单个细胞,在这些神经元内也是如此
一个定义的“时钟基因”网络,形成自动调节转录/翻译反馈环路(TTFL)
产生近24小时的节奏。
我们对 SCN 夹带和起搏器机制的了解存在重大差距
与节律生成、实时动态 SCN 分子和神经网络不同,它具有可塑性。
夹带过程中的反应以前是无法观察到的,因此关于这方面的知识有限
我们已经开发并建立了新的方法。
使用一种方法能够直接观察 SCN 分子和神经网络夹带拓扑
它将时钟神经元电活动的 ChrimsonR 光遗传学操作与 PER2::LUC real- 相结合
时钟基因激活的时间报告(EX vivo CIrcadian Timing and Entrainment,EXCITE 提供)。
对隔离 SCN 进行重复输入刺激的精确定时、持续时间和强度,并跟踪 SCN 时钟
离体分离的 SCN 在高时间和空间分辨率下进行 3-5 周的分子节律。
该系统惊人地再现了完整动物生物钟夹带的典型特征,包括
具有周期后效应、周期匹配和系统相位角差异的类光相位响应
偏离 24 小时的刺激,以及最低可容忍夜间光周期的差异夹带。
我们将使用 EXCITE 来检查 - (1) SCN 夹带的分子和神经网络拓扑
可塑性,(2) SCN 神经网络夹带拓扑,以及 (3) 光周期分子机制
诱导 SCN 网络可塑性的成功完成将为 SCN 提供新的见解。
夹带和可塑性 - SCN 分子和神经网络如何通过光输入进行修改以产生
定义 SCN 编码光历史和光周期的机制。
为操纵 SCN 神经和转录网络以改善昼夜节律紊乱开辟了道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOUGLAS G MCMAHON其他文献
DOUGLAS G MCMAHON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOUGLAS G MCMAHON', 18)}}的其他基金
Multiphoton Imaging and Electrophysiology Workstation
多光子成像和电生理学工作站
- 批准号:
8447908 - 财政年份:2013
- 资助金额:
$ 32.16万 - 项目类别:
Project 6 Interactions of Serotonin and Circadian Signaling Networks
项目 6 血清素和昼夜节律信号网络的相互作用
- 批准号:
8134928 - 财政年份:2010
- 资助金额:
$ 32.16万 - 项目类别:
Project 6 Interactions of Serotonin and Circadian Signaling Networks
项目 6 血清素和昼夜节律信号网络的相互作用
- 批准号:
7677523 - 财政年份:2008
- 资助金额:
$ 32.16万 - 项目类别:
Project 6 Interactions of Serotonin and Circadian Signaling Networks
项目 6 血清素和昼夜节律信号网络的相互作用
- 批准号:
7305763 - 财政年份:2007
- 资助金额:
$ 32.16万 - 项目类别:
相似国自然基金
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
METTL3通过m6A甲基化修饰NADK2调节脯氨酸代谢和胶原合成影响皮肤光老化的机制研究
- 批准号:82360625
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Circadian Control of Brain-peripheral Immune Response After Stroke
中风后大脑周围免疫反应的昼夜节律控制
- 批准号:
10733910 - 财政年份:2023
- 资助金额:
$ 32.16万 - 项目类别:
Targeting smooth muscle cell BMAL1 as a new therapeutic strategy against restenosis
靶向平滑肌细胞 BMAL1 作为抗再狭窄的新治疗策略
- 批准号:
10561398 - 财政年份:2023
- 资助金额:
$ 32.16万 - 项目类别:
Chromatin connects metabolism to circadian gene regulation in the aging eye
染色质将新陈代谢与衰老眼睛的昼夜节律基因调控联系起来
- 批准号:
10585177 - 财政年份:2023
- 资助金额:
$ 32.16万 - 项目类别:
Sleep abnormalities in Down Syndrome-related Alzheimer's disease
唐氏综合症相关阿尔茨海默病的睡眠异常
- 批准号:
10658057 - 财政年份:2023
- 资助金额:
$ 32.16万 - 项目类别:
Disrupted Circadian Regulation of Cell Migration at CNS-Immune Interfaces in Aging and Alzheimer's Disease
衰老和阿尔茨海默病中中枢神经系统免疫界面细胞迁移的昼夜节律调节被破坏
- 批准号:
10515951 - 财政年份:2022
- 资助金额:
$ 32.16万 - 项目类别: