Role of microbiome in cancer and inflammation

微生物组在癌症和炎症中的作用

基本信息

项目摘要

We extensively use mice deficient for immune or inflammation-related genes and it is always difficult to distinguish a direct effect of those genes on the colitis or cancer, or an indirect one through the regulation of the intestinal microbiota. Overall these studies will greatly benefit by the access to a germ free facility that we are contributed to establish in Frederick and particularly by the availability of committed expertise in gut microbiology based on state of the art sequencing and bioinformatics, expertise that is provided by the microbiome core that we have established in Bethesda. We have established methods for the determination of mouse microbioma using 454 sequencing or MiSeq sequencingof 16 RNA, metagenomic analysis using NextSeq sequencing, and cytofluorimetric analysis of FISH labeling of specific bacterial types. We also initiated studies with germ free mice, gnotobiotic mice with defined intestinal flora, and mice reconstitute after antibiotic treatment. Initially we studied the role of the intestinal microbiota in experimental models of colitis and colitis-associated cancer using mice genetically deficient for inflammation-controlling genes such as MyD88, IL-18, TNF, TLRs, and others. In these mice the genetic defects induce a dysbiosis that can be transferred to normal mice by co-housing or fecal transplant and enhance susceptibility to chemical carcinogenesis. The bacterial species responsible of this increased susceptibility to carcinogenesis and their mechanism of action are being investigated. The role of commensal microbiota in energetic alteration associated with cancer (i.e. obesity, cachexia, anorexia, cancer treatment, irradiation) has been initiated in murine experimental models and in observational clinical experimentation. Compartmentalized control of skin immunity by resident commensals (Science. 2012;337:1115-9). Intestinal commensal bacteria induce protective and regulatory responses that maintain host-microbial mutualism. However, the contribution of tissue-resident commensals to immunity and inflammation at other barrier sites has not been addressed. We found that in mice, the skin microbiota has an autonomous role in controlling the local inflammatory milieu and tuning resident T lymphocyte function. Protective immunity to a cutaneous pathogen was found to be critically dependent on the skin microbiota but not the gut microbiota. Furthermore, skin commensals tuned the function of local T cells in a manner dependent on signaling downstream of the interleukin-1 receptor. These findings underscore the importance of the microbiota as a distinctive feature of tissue compartmentalization, and provide insight into mechanisms of immune system regulation by resident commensal niches in health and disease. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment (Science 342:967-970). The gut microbiome influences both local and systemic inflammation. Although the role of inflammation in cancer is well documented, whether commensal bacteria can exert distant effects on the inflammation in the sterile tumor microenvironment remains unclear. Here we show that microbiota perturbation impairs the response of subcutaneous cancers to CpG-oligonucleotide-immunotherapy or platinum chemotherapy. In antibiotic-treated or germ-free mice, decreased cytokine production from tumor-infiltrating monocyte-derived cells following CpG-ODN treatment reduced tumor necrosis, whereas deficient chemotherapy-induced production of reactive oxygen species by myeloid cells impaired genotoxicity and tumor destruction. Thus, optimal response to cancer immunotherapy and chemotherapy requires an intact commensal microbiota that acts distantly by modulating myeloid-derived cell function in the tumor microenvironment. These findings underscore the importance of the microbiota in the outcome of disease treatment. The toxicity mediated by cisplatin (intestinal mucosa damage, nephrotoxicity, decrease of adipose and muscular tissues (cachexia)) require the presence of gut microbiota. The participation of different microbial species and the mechanisms by which they allow the cisplatin toxicity are being investigated. We also study cancer associated cachexia in mice and humans to investigate whether the microbiota regulates the establishment of this devastating cancer comorbidity and could be targeted therapeutically. In mice we focused initially on a model of cachexia induced by the Lewis Lung Carcinoma (LLC) tumor that in 18-21 days induces weight loss associated with loss of adipose and muscle tissue. LLC-induced cachexia is due to increased lipolysis in the white adipose tissue (WAT). Unlike what we observed in cisplatin induced cachexia, beiging (switch from WAT to brown adipose tissue) is not an important component of LLC induced cachexia. LLC induces cachexia by inducing WAT infiltration of c-Kit expressing immature oxidative neutrophils that induce lipolysis by ROS production. Deletion of neutrophils or treatment of mice with N-acetyl cysteine prevent cachexia. Cachexia is accelerated in germ free mice due to increased lipolysis and failure to upregulate compensatory mechanisms, adipogenesis and lipogenesis. The microbiota delays cancer cachexia at least in part by producing SCFA that regulate lipolysis, lipogenesis and adipogenesis. The results obtained in the LLC model showing absence of beiging, neutrophil infiltration and lack of dependence from IL-6 differ in part from those described in other experimental models. Because different tumor types may induce cachexia through different mechanisms in mice as well as in patients, we will compare the mechanism involved and the role of the microbiota in different models (SW480, 4T1 and C26 transplantable tumors; Kras/P53 pancreatic GEMM and cell lines). Kras/P53 mice and cell lines will be studied in collaboration with Perwez Hussein, CCR. The group of Dan McVicar, CIP, has shown in the spleen of 4T1 tumor bearing animals that immature neutrophils, defined by expression of c-Kit and dependent on c-Kit signaling, possess the capacity for oxidative mitochondrial metabolism and in limited glucose use their mitochondria to support NADPH-oxidase dependent ROS production via fatty acid oxidation. The characteristics of these splenic neutrophils are like those that we observed in the cachectic adipose tissue and that induce lipolysis through ROS, thus we plan to collaborate with Dan McVicar in studying the metabolism of neutrophil and adipose tissue during cachexia. The role of the microbiota will be studied by modifying the microbiota by diet (e.g. diet supplemented with soluble fibers such as inulin) or other perturbations (followed by metagenomic and metatranscriptomic analysis) or by targeted gnotobiotic experiments, focusing initially on the production of SCFA. Cancer patients' neutrophils display immaturity and oxidative metabolism, thus, the mechanism of cachexia observed in mice may extend to humans. We collaborate with Marilia Seelaender, University of Sao Paulo, testing the hypothesis that in cachectic patients gut barrier disruption associated with altered microbiota composition may elicit persistent immune activation in the host. We have analyzed 7 cachectic patients with colorectal cancer (CC) and 14 weight stable patients (WSC) by 16S analysis. We will extend this analysis to a larger number of patients by metagenomic and metatranscriptomic analysis. The initial studies have shown an increased number of lymphoid aggregates in CC patients associated with degradation of mucus layer, infiltration with eosinophils, increased G-CSF, IL-13 and TGF-beta thus showing analogy with the mouse results.
我们广泛使用缺乏免疫或炎症相关基因的小鼠,并且总是很难区分这些基因对结肠炎或癌症的直接作用,或者通过调节肠道微生物群的调节而间接。总的来说,这些研究将通过获得弗雷德里克(Frederick)建立的无菌设施的访问,特别是通过基于微生物的状态和生物信息学的专业知识,这将极大地受益于我们在弗雷德里克(Frederick)建立的,特别是由微生物组提供的专业知识。我们在贝塞斯达建立的核心。我们已经建立了使用454个测序或Miseq测序16 RNA,使用NextSeq测序的元基因组分析以及对特定细菌类型的鱼类标记的细胞基因组分析的方法来确定小鼠微生物瘤的方法。我们还开始使用无菌小鼠,具有定义的肠菌群的gnotobiotic小鼠以及抗生素治疗后重新构成的小鼠。最初,我们研究了肠道微生物群在结肠炎和结肠炎相关癌症实验模型中的作用,使用小鼠在遗传上缺乏炎症控制基因,例如MyD88,IL-18,IL-18,TNF,TNF,TLR和其他。在这些小鼠中,遗传缺陷会诱导营养不良,可以通过共屋或粪便移植并增强对化学癌变的敏感性转移到正常小鼠。正在研究这种细菌物种增加对致癌作用及其作用机理的敏感性。共生微生物群在与癌症(即肥胖症,恶病质,厌食症,癌症治疗,辐射)相关的能量改变中的作用已在鼠实验模型和观察性临床实验中启动。居民共生对皮肤免疫的隔离控制(Science。2012; 337:1115-9)。肠道细菌会诱导维持宿主微生物互助的保护性和调节反应。但是,尚未解决组织居民份额对其他屏障部位的免疫和炎症的贡献。我们发现,在小鼠中,皮肤微生物群在控制局部炎症环境和调整居民T淋巴细胞功能方面具有自主作用。发现对皮肤病原体的保护性免疫与皮肤微生物群有关,而不是肠道微生物群。此外,皮肤分别以依赖白介素-1受体下游的信号传导的方式调整了局部T细胞的功能。这些发现强调了微生物群作为组织隔室化的独特特征,并洞悉了居民在健康和疾病中的共生壁nike的免疫系统调节机制。共生细菌通过调节肿瘤微环境来控制癌症对治疗的反应(科学342:967-970)。肠道微生物组影响局部和全身性炎症。尽管炎症在癌症中的作用有充分的文献证明,但共生细菌是否可以对无菌肿瘤微环境的炎症产生遥远的影响。在这里,我们表明微生物群扰动会损害皮下癌症对CPG-寡核苷酸免疫疗法或铂化化疗的反应。在抗生素治疗或无菌小鼠中,CPG-ODN治疗后,肿瘤降低单核细胞衍生的细胞的细胞因子产生降低,减少了肿瘤坏死,而缺乏化学疗法诱导的基因托毒性和肿瘤造成的肌动素细胞损害了活性氧的产生。因此,对癌症免疫疗法和化学疗法的最佳反应需要完整的共生菌群,该菌群通过调节肿瘤微环境中的髓样细胞功能而远处起作用。这些发现强调了微生物群在疾病治疗结果中的重要性。顺铂介导的毒性(肠粘膜损伤,肾毒性,脂肪降低和肌肉组织(Cachexia))需要存在肠道微生物群。正在研究不同微生物物种的参与及其允许顺铂毒性的机制。我们还研究了小鼠和人类中癌症的恶病质,以研究微生物群是否调节这种毁灭性的癌症合并症的建立,并可以针对治疗。在小鼠中,我们最初集中在由刘易斯肺癌(LLC)诱导的病虫模型上,该模型在18-21天内诱导了与脂肪和肌肉组织丧失有关的体重减轻。 LLC诱导的恶病质是由于白脂肪组织(WAT)中脂解的增加。与我们在顺铂诱导的恶病质中观察到的不同,beigig(从WAT到棕色脂肪组织切换)并不是LLC诱导的恶病质的重要组成部分。 LLC通过诱导C-KIT浸润表达不成熟的氧化性嗜中性粒细胞,从而诱导恶病质,从而通过ROS产生诱导脂解。嗜中性粒细胞的缺失或用N-乙酰半胱氨酸治疗小鼠预防恶病质。由于脂解的增加和无法上调补偿机制,脂肪生成和脂肪形成,因此在无菌小鼠中加速了恶病质。微生物群至少通过产生调节脂解,脂肪生成和脂肪形成的SCFA至少部分延迟了癌症恶病质。在LLC模型中获得的结果表明,IL-6的缺乏,中性粒细胞浸润和缺乏依赖性与其他实验模型中描述的结果不同。由于不同的肿瘤类型可能通过小鼠和患者的不同机制诱导恶病质,因此我们将比较微生物群在不同模型中所涉及的机制和作用)。 KRAS/p53小鼠和细胞系将与CCR Perwez Hussein合作研究。丹·麦克维卡(Dan McVicar)组CIP在4T1肿瘤轴承动物的脾脏中显示,未成熟的嗜中性粒细胞通过C-KIT表达和依赖C-KIT信号的表达定义,具有氧化性线粒体代谢和有限的葡萄糖使用的能力线粒体通过脂肪酸氧化支持NADPH-氧化酶依赖性ROS的产生。这些脾嗜中性粒细胞的特征就像我们在缓存的脂肪组织中观察到的那样,并诱导通过ROS诱导脂肪分解,因此我们计划与Dan McVicar合作研究cachexia期间中性粒细胞和脂肪组织的代谢。将通过饮食(例如饮食(例如饮食)修饰菌群(例如,含糖蛋白等饮食)或其他扰动(随后进行元基因组学和元文字分析)或通过靶向的gnotobobiotic实验,最初侧重于SC​​FA的生产。癌症患者的嗜中性粒细胞表现出不成熟和氧化代谢,因此,在小鼠中观察到的恶病质机制可能延伸到人类。我们与圣保罗大学的Marilia Seelaender合作,检验了以下假设:在缓存的患者中,与微生物群体成分改变有关的肠道屏障破坏可能会引起宿主中的持续免疫激活。我们通过16S分析分析了7例结肠直肠癌(CC)和14个体重稳定患者(WSC)的缓存患者。我们将通过元基因组和元文字分析将此分析扩展到大量患者。最初的研究表明,与粘液层降解,用嗜酸性粒细胞浸润,G-CSF,IL-13和TGF-β相关的CC患者中淋巴骨料数量增加,因此显示出与小鼠结果的类比。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GIORGIO TRINCHIERI其他文献

GIORGIO TRINCHIERI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GIORGIO TRINCHIERI', 18)}}的其他基金

Therapy with fecal microbiota transplantation and immune checkpoint blockade for solid tumors
粪便微生物群移植和免疫检查点阻断治疗实体瘤
  • 批准号:
    10393924
  • 财政年份:
    2022
  • 资助金额:
    $ 159.64万
  • 项目类别:
Therapy with fecal microbiota transplantation and immune checkpoint blockade for solid tumors
粪便微生物群移植和免疫检查点阻断治疗实体瘤
  • 批准号:
    10650717
  • 财政年份:
    2022
  • 资助金额:
    $ 159.64万
  • 项目类别:
Immune Evasion
免疫逃避
  • 批准号:
    6747202
  • 财政年份:
    2004
  • 资助金额:
    $ 159.64万
  • 项目类别:
CORE--FLOW CYTOMETRY FACILITY
核心——流式细胞仪
  • 批准号:
    6429977
  • 财政年份:
    2001
  • 资助金额:
    $ 159.64万
  • 项目类别:
CORE--FLOW CYTOMETRY FACILITY
核心——流式细胞仪
  • 批准号:
    6312712
  • 财政年份:
    2000
  • 资助金额:
    $ 159.64万
  • 项目类别:
CORE--FLOW CYTOMETRY FACILITY
核心——流式细胞仪
  • 批准号:
    6299940
  • 财政年份:
    2000
  • 资助金额:
    $ 159.64万
  • 项目类别:
CORE--FLOW CYTOMETRY FACILITY
核心——流式细胞仪
  • 批准号:
    6101449
  • 财政年份:
    1999
  • 资助金额:
    $ 159.64万
  • 项目类别:
CORE--FLOW CYTOMETRY FACILITY
核心——流式细胞仪
  • 批准号:
    6268605
  • 财政年份:
    1998
  • 资助金额:
    $ 159.64万
  • 项目类别:
CORE--FLOW CYTOMETRY FACILITY
核心——流式细胞仪
  • 批准号:
    6235998
  • 财政年份:
    1997
  • 资助金额:
    $ 159.64万
  • 项目类别:
IMMUNOBIOLOGY OF INTERLEUKIN 12
白细胞介素 12 的免疫生物学
  • 批准号:
    2653831
  • 财政年份:
    1994
  • 资助金额:
    $ 159.64万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Signaling and metabolic functions of nSMase-2 in hepatic steatosis and onset of insulin resistance
nSMase-2 在肝脂肪变性和胰岛素抵抗发作中的信号传导和代谢功能
  • 批准号:
    10735117
  • 财政年份:
    2023
  • 资助金额:
    $ 159.64万
  • 项目类别:
A novel role of cholesterol and SR-BI in adipocyte biology
胆固醇和 SR-BI 在脂肪细胞生物学中的新作用
  • 批准号:
    10733720
  • 财政年份:
    2023
  • 资助金额:
    $ 159.64万
  • 项目类别:
Impact of Body Composition and Related Inflammatory and Immune States on Prognosis of Non-Muscle Invasive Bladder Cancer
身体成分及相关炎症和免疫状态对非肌肉浸润性膀胱癌预后的影响
  • 批准号:
    10674401
  • 财政年份:
    2023
  • 资助金额:
    $ 159.64万
  • 项目类别:
Regulation of neuronal function by mitochondrial uncoupling
通过线粒体解偶联调节神经元功能
  • 批准号:
    10664198
  • 财政年份:
    2023
  • 资助金额:
    $ 159.64万
  • 项目类别:
Differences in Women and Men with Atrial Fibrillation
女性和男性房颤患者的差异
  • 批准号:
    10822952
  • 财政年份:
    2023
  • 资助金额:
    $ 159.64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了