The space-time organization of sleep oscillations as potential biomarker for hypersomnolence
睡眠振荡的时空组织作为嗜睡的潜在生物标志物
基本信息
- 批准号:10731224
- 负责人:
- 金额:$ 12.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-17 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdultAnxietyArticulationBehavior assessmentBehavioralBiological MarkersBiophysicsBrainCentral Nervous SystemCharacteristicsClassificationClinicalCognitionCognitiveComplexControl GroupsDataData SetDetectionDiagnosticDiseaseDisorders of Excessive SomnolenceElectrodesElectroencephalographyElectrophysiology (science)ElementsEventExcessive Daytime SleepinessFrequenciesFutureHealthHomeostasisHypersomniasHypersomnolenceIndividualInterventionInvestigationLinear ModelsLinkMachine LearningMajor Depressive DisorderMeasuresMedicalMedicineMental DepressionMethodologyNeuropsychologyObstructive Sleep ApneaOutcome AssessmentParietalParticipantPatternPersonsPhenotypePhysiologicalPopulationPrevalenceProcessPropertyQuality of lifeResearchRoleScalp structureSleepSleep FragmentationsStatistical StudySymptomsTechniquesTestingTherapeuticTimeWorkadvanced analyticsbiomarker identificationbiophysical propertiescommon symptomcomorbiditydensitydiagnostic criteriaeconomic impactfollow-upimprovedinsightmachine learning classificationmemory consolidationmemory processneuralnon rapid eye movementpopulation basedpotential biomarkersleep patternsocioeconomics
项目摘要
Project Summary
Hypersomnolence (HYP), or excessive daytime sleepiness, is the most common symptom encountered in
sleep medicine, and can present as linked to other medical disorders or independently. Discriminating
among the multiple possible causes of HYP is a complex process, and the underlying cause is often
unknown. Furthermore, there are currently no reliable electrophysiological parameters or biomarkers for
HYP, which is a severe limitation to the diagnostic and therapeutic process. Understanding the
biophysical presentation of HYP in sleep brain dynamics is essential to both the identification of reliable
electrophysiological biomarkers and to building a mechanistic understanding of the physiological
manifestations of HYP.
Most studies of sleep EEG dynamics focus on rhythms uniformly grouped by their dominant frequency,
sometimes addressing their spatial presentation, but overall ignoring the articulation of sleep rhythms in
space-time organized events. In recent work on typical adult populations the PI has introduced data-
driven techniques that reveal the space-time patterns of slow oscillations (SOs) and spindles, both sleep
rhythms cardinal to sleep homeostasis, with SOs explicitly tied to the restorative-ness of a night of sleep.
This research line has also shown that differentiation of sleep rhythms in space-time patterns is a powerful
approach to revealing biophysical differentiation among events classified as the same “rhythm”
suggesting their potential differential contribution to sleep functions. Here, we propose to apply these
data-driven approaches to describe in detail the space-time presentation of HYP in sleep brain dynamics,
in order to determine HYP biomarkers and to advance our understanding of the manifestations of HYP in
brain activity important to health and cognition.
This study will re-analyze a well-characterized dataset including the sleep studies of persons with HYP
and controls, with both groups also articulated based on presence/absence of major depressive disorder.
Specifically, we will describe the space-time patterns of SOs and spindles on the scalp and their main
biophysical properties, comparing them among the HYP and control group (aim 1). We will then use
machine learning classification to determine for each individual the estimated cortical-subcortical currents
that most differentiate SOs space-time types, compare the results in HYP and controls (aim 2). Finally,
we will statistically evaluate the link between these biophysical quantifiers of space-time sleep patterns
and clinical/behavioral assessments of HYP symptoms, depression, and anxiety. This research will lead to
new insights into potential brain mechanisms that underlie HYP, as well as refined diagnostic and future
therapies for the multitude suffering with HYP disorder.
项目概要
嗜睡症 (HYP),或白天过度嗜睡,是最常见的症状
睡眠医学,可以与其他疾病相关或独立存在。
HYP的多种可能原因中,是一个复杂的过程,其根本原因往往是
此外,目前还没有可靠的电生理参数或生物标志物。
HYP,严重限制了诊断和治疗过程。
HYP 在睡眠大脑动力学中的生物物理表现对于识别可靠的
电生理生物标志物并建立对生理学的机械理解
HYP 的表现。
大多数睡眠脑电图动态研究都集中在按主导频率统一分组的节律上,
有时关注它们的空间呈现,但总体上忽略了睡眠节律的表达
在最近对典型成年人群的研究中,PI 引入了数据-
揭示慢振荡(SO)和纺锤体睡眠时空模式的驱动技术
节律对睡眠稳态至关重要,SO 与夜间睡眠的恢复能力明确相关。
该研究还表明,时空模式中睡眠节律的区分是一种强大的方法。
揭示被归类为相同“节奏”的事件之间生物物理差异的方法
在这里,我们建议应用它们对睡眠功能的潜在差异贡献。
数据驱动的方法来详细描述睡眠大脑动力学中 HYP 的时空表现,
为了确定 HYP 生物标志物并加深我们对 HYP 表现的理解
大脑活动对健康和认知很重要。
这项研究将重新分析一个充分表征的数据集,包括 HYP 患者的睡眠研究
和对照组,两组也根据是否存在重度抑郁症进行阐述。
具体来说,我们将描述头皮上 SO 和纺锤体的时空模式及其主要特征。
生物物理特性,在 HYP 和对照组之间进行比较(目标 1)。
机器学习分类以确定每个个体的估计皮质-皮质下电流
最能区分 SO 的时空类型,比较 HYP 和对照的结果(目标 2)。
我们将仔细评估这些时空睡眠模式的生物物理量词之间的联系
这项研究将导致 HYP 症状、抑郁和焦虑的临床/行为评估。
对 HYP 潜在大脑机制的新见解,以及精细的诊断和未来
针对 HYP 障碍患者的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paola Malerba其他文献
Paola Malerba的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 12.72万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 12.72万 - 项目类别:
Translational Research and Implementation Science for Nurses (TRAIN) Program 2.0
护士转化研究和实施科学 (TRAIN) 计划 2.0
- 批准号:
10680769 - 财政年份:2023
- 资助金额:
$ 12.72万 - 项目类别:
Reducing Opioid and Other Drug Use in Justice-Involved Emerging Adults using Paraprofessional Coaches (with and without Lived Experience) to Deliver Effective Services in a Non-Treatment Setting
使用辅助专业教练(有或没有生活经验)减少涉及司法的新兴成年人的阿片类药物和其他药物使用,以在非治疗环境中提供有效的服务
- 批准号:
10846139 - 财政年份:2023
- 资助金额:
$ 12.72万 - 项目类别: