Developing minimal purification cryo-EM to understand mitochondrial myopathies
开发最小纯化冷冻电镜来了解线粒体肌病
基本信息
- 批准号:10732697
- 负责人:
- 金额:$ 44.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectBiochemicalBiological ProcessCell physiologyCellsComplexCryoelectron MicroscopyDNA Sequence AlterationData CollectionDefectDevelopmentDiseaseDisease ProgressionDrug TargetingDrug resistanceExerciseFunctional disorderFundingFutureGeneticGenetic DiseasesHumanImageIndividualInvestigationLinkMacromolecular ComplexesMembrane ProteinsMetabolicMethodologyMethodsMissense MutationMitochondriaMitochondrial MyopathiesMitochondrial ProteinsMolecularMusMuscleMuscle CellsMuscle FibersMuscle MitochondriaMuscle functionMuscular AtrophyMutationMyopathyNeuromuscular DiseasesOrganellesOutcomeOxidative PhosphorylationPathologicPathologyPatientsProductionProkaryotic CellsProtocols documentationRelapseResolutionSamplingSkeletal MuscleSortingStructureSystemTechnologyTherapeuticTissuesVisualizationWasting SyndromeWorkbasebiological systemscell typedata analysis pipelinediagnostic tooldrug discoveryexpectationheterogenous datainsightmacromolecular assemblymitochondrial dysfunctionparticlepersonalized medicineprotein functionprotein purificationprotein structureproteostasisstructural biology
项目摘要
ABSTRACT
Single particle cryoEM structure determination is now a widely used methodology that has revealed the detailed
mechanisms underlying a wide range of biological systems. High-resolution single particle cryoEM studies have
helped us understand how environmental or genetic factors perturb normal biological function, and how these
factors can give rise to disease. Insights gained through such structural studies of cellular machinery have greatly
benefited drug discovery efforts, as well as expanded our understanding of drug resistance and therapeutic
relapse. However, successful single particle cryoEM structure determination continues to be dependent on the
production and purification of highly homogeneous, biochemically stable samples for imaging. Here, we plan to
harness the unique strengths of single particle cryoEM technologies - minimal sample requirements and an
exceptional capacity for structural characterization of highly heterogeneous data - to move beyond this traditional
approach. Precedence for such studies have been set by previous high-resolution cryoEM structures that were
determined from heterogeneous mixtures of soluble or membrane-associated proteins extracted from single-cell
lysates. We plan to extend these approaches to elucidate structures of endogenous mammalian mitochondrial
complexes. In particular, the methodologies developed by this work will establish an avenue to perform structural
investigation of mitochondrial complexes derived from mitochondrial myopathy patients. Mitochondrial
dysfunction in skeletal muscle cells can have severe pathological outcomes, and is associated with a variety of
muscle-wasting diseases and numerous neuromuscular disorders. One in 5000 individuals in the U.S. suffers
from mitochondrial myopathies due to genetic mutation, and while substantial effort has been placed on
understanding the genetics of these diseases, we lack an underlying molecular description of the specific
perturbations responsible for pathology. Directly visualizing the endogenous mitochondrial complexes that carry
mutations implicated in disease states enables us to inspect how missense mutations impact macromolecular
assembly and interactions. We will develop mitochondrial isolation and structure determination methodologies
to enable detailed structural assessment of the endogenous complexes involved in human mitochondrial
proteostasis and the mitochondrial OXPHOS system, without the need for extensive protein purification. We
have shown that mitochondrial lysates can be directly applied to EM grids and imaged to yield high-resolution
structures of abundant complexes. We will further develop this pipeline to produce high-resolution structures of
mitochondrial complexes and interaction partners from the distinct mitochondrial subcompartments, providing
important molecular insights into how mutations associated with mitochondrial myopathies perturb protein
structure and function. The results will advance our understanding of skeletal muscle myopathies through direct
visualization of the machines involved in disease progression, unveiling never-before-seen mitochondrial
assemblies, providing a molecular explanation for disease states, and laying the groundwork for future therapies.
抽象的
单个粒子冷冻结构确定现在是一种广泛使用的方法,已揭示了详细的方法
广泛的生物系统的基础机制。高分辨率的单粒子冷冻研究具有
帮助我们了解环境或遗传因素如何扰动正常的生物学功能,以及这些因素如何
因素可能引起疾病。通过这种细胞机械结构研究获得的见解极大
受益于药物发现工作,并扩大了我们对耐药性和治疗性的理解
复发。但是,成功的单粒子冷冻结构确定继续取决于
高度均匀的生化稳定样品的产生和纯化,用于成像。在这里,我们计划
利用单粒子冷冻技术的独特优势 - 最小样本要求和
高度异构数据的结构表征的出色能力 - 超越这种传统
方法。此类研究的优先事项是由以前的高分辨率冷冻结构确定的
由从单细胞提取的可溶性或膜相关蛋白的异质混合物确定
裂解物。我们计划将这些方法扩展到阐明内源性哺乳动物线粒体的结构
复合物。特别是,这项工作开发的方法将建立一条途径来执行结构
对线粒体肌病患者衍生的线粒体复合物的研究。线粒体
骨骼肌细胞功能障碍可能具有严重的病理结局,并且与多种
浪费肌肉疾病和许多神经肌肉疾病。美国5000人中有一个人受苦
由于基因突变引起的线粒体肌病
了解这些疾病的遗传学,我们缺乏对特定的基本分子描述
负责病理学的扰动。直接可视化携带的内源线粒体复合物
与疾病状态有关的突变使我们能够检查错义突变如何影响大分子
组装和互动。我们将开发线粒体隔离和结构测定方法
为了详细的结构评估,对人线粒体涉及的内源性复合物
蛋白质癌和线粒体的Oxphos系统,无需广泛的蛋白质纯化。我们
已经表明线粒体裂解液可以直接应用于EM网格并成像以产生高分辨率
丰富复合物的结构。我们将进一步开发该管道,以生成高分辨率结构
来自不同线粒体子组门的线粒体复合物和相互作用伙伴,提供
对线粒体肌病的突变如何扰动蛋白的重要分子见解
结构和功能。结果将通过直接提高我们对骨骼肌肌病的理解
可视化疾病进展的机器,从未见过的线粒体之前揭示
集会,为疾病状态提供分子解释,并为将来的疗法奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel C Lander其他文献
Gabriel C Lander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriel C Lander', 18)}}的其他基金
High-speed direct detector for cryo electron microscopy
用于冷冻电子显微镜的高速直接检测器
- 批准号:
10440962 - 财政年份:2022
- 资助金额:
$ 44.41万 - 项目类别:
Development of a pipeline for parallel elucidation of protein structures
开发并行阐明蛋白质结构的管道
- 批准号:
10434001 - 财政年份:2021
- 资助金额:
$ 44.41万 - 项目类别:
Development of a pipeline for parallel elucidation of protein structures
开发并行阐明蛋白质结构的管道
- 批准号:
10231713 - 财政年份:2021
- 资助金额:
$ 44.41万 - 项目类别:
Automated, optimized, intelligent data collection for cryo-EM
冷冻电镜的自动化、优化、智能数据采集
- 批准号:
10317907 - 财政年份:2021
- 资助金额:
$ 44.41万 - 项目类别:
Automated, optimized, intelligent data collection for cryo-EM
冷冻电镜的自动化、优化、智能数据采集
- 批准号:
10649517 - 财政年份:2021
- 资助金额:
$ 44.41万 - 项目类别:
Automated, optimized, intelligent data collection for cryo-EM
冷冻电镜的自动化、优化、智能数据采集
- 批准号:
10491792 - 财政年份:2021
- 资助金额:
$ 44.41万 - 项目类别:
Extending the limits of cryo-EM to better understand TTR misfolding and aggregation
扩展冷冻电镜的局限性以更好地了解 TTR 错误折叠和聚集
- 批准号:
10263946 - 财政年份:2020
- 资助金额:
$ 44.41万 - 项目类别:
Extending the limits of cryo-EM to better understand TTR misfolding and aggregation
扩展冷冻电镜的局限性以更好地了解 TTR 错误折叠和聚集
- 批准号:
9981223 - 财政年份:2020
- 资助金额:
$ 44.41万 - 项目类别:
IMPACTING MITOCHONDRIAL FUNCTION THROUGH ALTERED PROTEASE ACTIVITY
通过改变蛋白酶活性影响线粒体功能
- 批准号:
10831938 - 财政年份:2016
- 资助金额:
$ 44.41万 - 项目类别:
Impacting mitochondrial function through altered protease activity
通过改变蛋白酶活性影响线粒体功能
- 批准号:
10741597 - 财政年份:2016
- 资助金额:
$ 44.41万 - 项目类别:
相似国自然基金
耦合生物物理与生化地球化学过程的土地覆被变化多尺度气候效应研究
- 批准号:42371102
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
力信号与生化信号协同调制免疫细胞两个关键界面过程的生物物理研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
光合共生生物膜生化转化及共水热碳化过程多元多相传递理论及强化方法
- 批准号:52236009
- 批准年份:2022
- 资助金额:269 万元
- 项目类别:重点项目
力信号与生化信号协同调制免疫细胞两个关键界面过程的生物物理研究
- 批准号:12274307
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
木质纤维素生物质浓醪糖化过程物质传递与生化转化特性的基础研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
- 批准号:
10508305 - 财政年份:2023
- 资助金额:
$ 44.41万 - 项目类别:
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 44.41万 - 项目类别:
Studies of Chemically Labile Alkylation Damage in DNA
DNA 中化学不稳定烷基化损伤的研究
- 批准号:
10735154 - 财政年份:2023
- 资助金额:
$ 44.41万 - 项目类别:
Tau protein proteolysis signaling in Alzheimer's disease
阿尔茨海默病中的 Tau 蛋白水解信号
- 批准号:
10728202 - 财政年份:2023
- 资助金额:
$ 44.41万 - 项目类别: