Developing minimal purification cryo-EM to understand mitochondrial myopathies
开发最小纯化冷冻电镜来了解线粒体肌病
基本信息
- 批准号:10732697
- 负责人:
- 金额:$ 44.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectBiochemicalBiological ProcessCell physiologyCellsComplexCryoelectron MicroscopyDNA Sequence AlterationData CollectionDefectDevelopmentDiseaseDisease ProgressionDrug TargetingDrug resistanceExerciseFunctional disorderFundingFutureGeneticGenetic DiseasesHumanImageIndividualInvestigationLinkMacromolecular ComplexesMembrane ProteinsMetabolicMethodologyMethodsMissense MutationMitochondriaMitochondrial MyopathiesMitochondrial ProteinsMolecularMusMuscleMuscle CellsMuscle FibersMuscle MitochondriaMuscle functionMuscular AtrophyMutationMyopathyNeuromuscular DiseasesOrganellesOutcomeOxidative PhosphorylationPathologicPathologyPatientsProductionProkaryotic CellsProtocols documentationRelapseResolutionSamplingSkeletal MuscleSortingStructureSystemTechnologyTherapeuticTissuesVisualizationWasting SyndromeWorkbasebiological systemscell typedata analysis pipelinediagnostic tooldrug discoveryexpectationheterogenous datainsightmacromolecular assemblymitochondrial dysfunctionparticlepersonalized medicineprotein functionprotein purificationprotein structureproteostasisstructural biology
项目摘要
ABSTRACT
Single particle cryoEM structure determination is now a widely used methodology that has revealed the detailed
mechanisms underlying a wide range of biological systems. High-resolution single particle cryoEM studies have
helped us understand how environmental or genetic factors perturb normal biological function, and how these
factors can give rise to disease. Insights gained through such structural studies of cellular machinery have greatly
benefited drug discovery efforts, as well as expanded our understanding of drug resistance and therapeutic
relapse. However, successful single particle cryoEM structure determination continues to be dependent on the
production and purification of highly homogeneous, biochemically stable samples for imaging. Here, we plan to
harness the unique strengths of single particle cryoEM technologies - minimal sample requirements and an
exceptional capacity for structural characterization of highly heterogeneous data - to move beyond this traditional
approach. Precedence for such studies have been set by previous high-resolution cryoEM structures that were
determined from heterogeneous mixtures of soluble or membrane-associated proteins extracted from single-cell
lysates. We plan to extend these approaches to elucidate structures of endogenous mammalian mitochondrial
complexes. In particular, the methodologies developed by this work will establish an avenue to perform structural
investigation of mitochondrial complexes derived from mitochondrial myopathy patients. Mitochondrial
dysfunction in skeletal muscle cells can have severe pathological outcomes, and is associated with a variety of
muscle-wasting diseases and numerous neuromuscular disorders. One in 5000 individuals in the U.S. suffers
from mitochondrial myopathies due to genetic mutation, and while substantial effort has been placed on
understanding the genetics of these diseases, we lack an underlying molecular description of the specific
perturbations responsible for pathology. Directly visualizing the endogenous mitochondrial complexes that carry
mutations implicated in disease states enables us to inspect how missense mutations impact macromolecular
assembly and interactions. We will develop mitochondrial isolation and structure determination methodologies
to enable detailed structural assessment of the endogenous complexes involved in human mitochondrial
proteostasis and the mitochondrial OXPHOS system, without the need for extensive protein purification. We
have shown that mitochondrial lysates can be directly applied to EM grids and imaged to yield high-resolution
structures of abundant complexes. We will further develop this pipeline to produce high-resolution structures of
mitochondrial complexes and interaction partners from the distinct mitochondrial subcompartments, providing
important molecular insights into how mutations associated with mitochondrial myopathies perturb protein
structure and function. The results will advance our understanding of skeletal muscle myopathies through direct
visualization of the machines involved in disease progression, unveiling never-before-seen mitochondrial
assemblies, providing a molecular explanation for disease states, and laying the groundwork for future therapies.
抽象的
单颗粒冷冻电镜结构测定现在是一种广泛使用的方法,它揭示了详细的
广泛生物系统的潜在机制。高分辨率单粒子冷冻电镜研究
帮助我们了解环境或遗传因素如何扰乱正常的生物功能,以及这些因素如何影响正常的生物功能。
因素可导致疾病。通过细胞机械的这种结构研究获得的见解极大地促进了
有益于药物发现工作,并扩大了我们对耐药性和治疗的理解
复发。然而,成功的单粒子冷冻电镜结构测定仍然取决于
生产和纯化高度均质、生化稳定的成像样品。在这里,我们计划
利用单颗粒冷冻电镜技术的独特优势 - 最少的样品要求和
高度异构数据的结构表征的卓越能力 - 超越了这种传统
方法。此类研究的优先顺序是由以前的高分辨率冷冻电镜结构确定的
由从单细胞中提取的可溶性或膜相关蛋白的异质混合物确定
裂解物。我们计划扩展这些方法来阐明内源哺乳动物线粒体的结构
复合物。特别是,这项工作开发的方法将为执行结构性研究建立一条途径。
对源自线粒体肌病患者的线粒体复合物的研究。线粒体
骨骼肌细胞功能障碍可能会产生严重的病理结果,并且与多种疾病相关
肌肉萎缩疾病和许多神经肌肉疾病。美国每 5000 人中就有 1 人患有此病
由于基因突变引起的线粒体肌病,虽然已经付出了大量努力
了解这些疾病的遗传学后,我们缺乏对特定疾病的潜在分子描述
造成病理学的扰动。直接可视化携带的内源性线粒体复合物
与疾病状态有关的突变使我们能够检查错义突变如何影响大分子
组装和相互作用。我们将开发线粒体分离和结构测定方法
能够对人类线粒体中涉及的内源复合物进行详细的结构评估
蛋白质稳态和线粒体 OXPHOS 系统,无需大量的蛋白质纯化。我们
已经表明线粒体裂解物可以直接应用于 EM 网格并成像以产生高分辨率
丰富的配合物结构。我们将进一步开发该管道以生产高分辨率结构
线粒体复合物和来自不同线粒体亚区室的相互作用伙伴,提供
关于与线粒体肌病相关的突变如何扰乱蛋白质的重要分子见解
结构和功能。研究结果将通过直接研究增进我们对骨骼肌肌病的理解
参与疾病进展的机器的可视化,揭示了前所未见的线粒体
组装,为疾病状态提供分子解释,并为未来的治疗奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel C Lander其他文献
Gabriel C Lander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriel C Lander', 18)}}的其他基金
High-speed direct detector for cryo electron microscopy
用于冷冻电子显微镜的高速直接检测器
- 批准号:
10440962 - 财政年份:2022
- 资助金额:
$ 44.41万 - 项目类别:
Development of a pipeline for parallel elucidation of protein structures
开发并行阐明蛋白质结构的管道
- 批准号:
10434001 - 财政年份:2021
- 资助金额:
$ 44.41万 - 项目类别:
Development of a pipeline for parallel elucidation of protein structures
开发并行阐明蛋白质结构的管道
- 批准号:
10231713 - 财政年份:2021
- 资助金额:
$ 44.41万 - 项目类别:
Automated, optimized, intelligent data collection for cryo-EM
冷冻电镜的自动化、优化、智能数据采集
- 批准号:
10317907 - 财政年份:2021
- 资助金额:
$ 44.41万 - 项目类别:
Automated, optimized, intelligent data collection for cryo-EM
冷冻电镜的自动化、优化、智能数据采集
- 批准号:
10649517 - 财政年份:2021
- 资助金额:
$ 44.41万 - 项目类别:
Automated, optimized, intelligent data collection for cryo-EM
冷冻电镜的自动化、优化、智能数据采集
- 批准号:
10491792 - 财政年份:2021
- 资助金额:
$ 44.41万 - 项目类别:
Extending the limits of cryo-EM to better understand TTR misfolding and aggregation
扩展冷冻电镜的局限性以更好地了解 TTR 错误折叠和聚集
- 批准号:
10263946 - 财政年份:2020
- 资助金额:
$ 44.41万 - 项目类别:
Extending the limits of cryo-EM to better understand TTR misfolding and aggregation
扩展冷冻电镜的局限性以更好地了解 TTR 错误折叠和聚集
- 批准号:
9981223 - 财政年份:2020
- 资助金额:
$ 44.41万 - 项目类别:
IMPACTING MITOCHONDRIAL FUNCTION THROUGH ALTERED PROTEASE ACTIVITY
通过改变蛋白酶活性影响线粒体功能
- 批准号:
10831938 - 财政年份:2016
- 资助金额:
$ 44.41万 - 项目类别:
Impacting mitochondrial function through altered protease activity
通过改变蛋白酶活性影响线粒体功能
- 批准号:
10741597 - 财政年份:2016
- 资助金额:
$ 44.41万 - 项目类别:
相似国自然基金
耦合生物物理与生化地球化学过程的土地覆被变化多尺度气候效应研究
- 批准号:42371102
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
光合共生生物膜生化转化及共水热碳化过程多元多相传递理论及强化方法
- 批准号:52236009
- 批准年份:2022
- 资助金额:269 万元
- 项目类别:重点项目
力信号与生化信号协同调制免疫细胞两个关键界面过程的生物物理研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
木质纤维素生物质浓醪糖化过程物质传递与生化转化特性的基础研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
免疫层析生化反应过程建模、优化控制与分析及在海洋生物毒素定量检测中的应用
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
- 批准号:
10508305 - 财政年份:2023
- 资助金额:
$ 44.41万 - 项目类别:
Defining the mechanisms by which mutations in DNAJC7 increase susceptibility to ALS/FTD
确定 DNAJC7 突变增加 ALS/FTD 易感性的机制
- 批准号:
10679697 - 财政年份:2023
- 资助金额:
$ 44.41万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 44.41万 - 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
- 批准号:
10663410 - 财政年份:2023
- 资助金额:
$ 44.41万 - 项目类别:
Biophysical, Structural, and Cellular Dissection of COPI-Dependent Retrograde Trafficking Using a Coronavirus Toolkit
使用冠状病毒工具包对 COPI 依赖性逆行贩运进行生物物理、结构和细胞解剖
- 批准号:
10646999 - 财政年份:2023
- 资助金额:
$ 44.41万 - 项目类别: