Massively Parallel Optoacoustic Retinal Stimulation at Micrometer-Resolution
微米分辨率的大规模并行光声视网膜刺激
基本信息
- 批准号:10731795
- 负责人:
- 金额:$ 26.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:BlindnessBrainCellsChemicalsCicatrixClinical TrialsComplexCoupledDataDevelopmentDevice DesignsDevicesElectrodesElectronsElectrophysiology (science)ElementsEsthesiaEyeFiberFilmFocused UltrasoundFoundationsGeneral HospitalsGeneticHumanImageImplantIndividualInterventionLabelLasersLegalLightingMagnetismMeasurementMedicalMethodsMusNatural regenerationNeuronsPatternPenetrationPerformancePhysiologic pulseProsthesisResolutionRetinaRetinal DegenerationRetinal Ganglion CellsSchemeSourceTechnologyTestingTissuesUnited StatesVisionbiomaterial compatibilityclinical translationcraniumdensitydesigndigitalelectric impedanceflexibilityimplant designimplantable deviceimprovedin vivolensmedical schoolsmetermulti-electrode arraysmultidisciplinarynanomaterialsneuralneural circuitneuroregulationnew technologynon-geneticnoninvasive brain stimulationpatch clampresponseretina implantationretinal prosthesisretinal stimulationscale upsight restorationtechnology platformtissue culturetranslational potentialultrasound
项目摘要
Project Summary
Retinal degenerative diseases are the leading cause of irreversible vision loss. There is no approved medical
intervention that could cure or reverse the courses of retinal degenerative diseases. Retina prosthesis are
implantable devices designed to stimulate sensation of vision in the eyes of individuals with these significant
conditions. Yet, due to the current spreading, resolution and pixel density are limited in the existing electrical
based devices. New technologies and methods are still being sought for precise and non-genetic implantable
retinal stimulation with an improved pixel density. In this application, we aim to develop an optoacoustic micro-
lens array (OAA). This array can generate a desired pattern of focus ultrasound for massively parallel retinal
stimulation with a focus size of 40-50 microns and pixel density up to 178 pixels per mm2. Such ultra-high spatial
precision, variable penetration and massive parallel capabilities enabled our focused optoacoustic technology
while incorporated in the soft implant design will offer clear advantages over existing methods. A multi-
disciplinary team with complementary expertise is assembled to perform the proposed activities. Prof. Chen
Yang (PI) is an expert in nanomaterials and development of new neural interface for modulation and
regeneration. Prof. Fried (Co-I, Mass General Hospital/Harvard Medical School) has considerable expertise
studying the responses of retinal and other CNS neurons to electric, magnetic, and other forms of artificial
stimulation. Prof. Ji-Xin Cheng (collaborator) is an expert in label-free chemical imaging and photoacoustic
devices. Our team has pioneered ultra-high precision optoacoustic neuromodulation. We have successfully
shown the retina can directly be stimulated by optoacoustic. These feasibility data led to our central hypothesis
that via the design of the optoacoustic lens arrays, optoacoustic is able to deliver massively parallel retinal
stimulation at an unprecedented 50 micro-meter spatial precision, serving a foundation for retinal prothesis. To
test this central hypothesis, the following specific aims are proposed. In Aim 1, we will demonstrate direct retinal
stimulation of four subtypes alpha RGC at micrometer-resolution by TFOE validated by patch clamp. In Aim 2,
we will demonstrate massively parallel retinal stimulation at micrometer resolution by OAA using multi-electron
array measurements. These efforts are expected to generate an implant design offering massively parallel and
high precision optoacoustic stimulation as genetics-free retinal prosthesis with translational potential to human.
项目摘要
视网膜退行性疾病是视力丧失的主要原因。没有批准的医疗
可以治愈或扭转视网膜退行性疾病的干预措施。视网膜假体是
旨在刺激具有这些意义的个体眼中的视觉感觉的植入式设备
状况。但是,由于当前的扩展,分辨率和像素密度在现有电气中受到限制
基于设备。仍在寻求新技术和方法,以确切和非遗传植入
视网膜刺激具有改善的像素密度。在此应用中,我们旨在开发光声微观 -
镜头阵列(OAA)。该阵列可以生成所需的焦点超声模式,以进行大规模平行的视网膜
刺激量为40-50微米,像素密度高达178像素。这样的超高空间
精度,可变渗透和庞大的并行功能使我们专注的光声技术
虽然在软植入物设计中合并将提供明显的优势,而不是现有方法。多
具有互补专业知识的纪律团队将组装以执行拟议的活动。陈教授
杨(PI)是纳米材料的专家,并开发了调制和
再生。 Fried教授(Co-I,Mass General Hospital/Harvard Medical School)具有相当大的专业知识
研究视网膜和其他中枢神经系统神经元对电气,磁和其他形式的人工的反应
刺激。 Ji-Xin Cheng教授(合作者)是无标签化学成像和光声的专家
设备。我们的团队开创了超高精度光声神经调节。我们已经成功
显示的视网膜可以通过光声直接刺激。这些可行性数据导致了我们的中心假设
通过光声晶状体阵列的设计,光声能够提供大量平行的视网膜
在前所未有的50微米空间精度下刺激,为视网膜原状奠定了基础。到
检验此中心假设,提出了以下特定目标。在AIM 1中,我们将展示直接视网膜
通过贴片夹验证的TFOE在微米分辨率下以微米分辨率刺激四个亚型alpha rgc。在AIM 2中,
我们将使用多电子在OAA分辨率下在微米分辨率下进行大量平行的视网膜刺激
阵列测量。预计这些努力将产生一种植入物设计,可提供巨大的平行性和
高精度光声刺激是无遗传学的视网膜假体,对人的转化潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen Yang其他文献
Chen Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
脑边界相关巨噬细胞介导肠道菌群失调致POCD的免疫代谢机制研究
- 批准号:82371208
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
放射后早期神经元-星形胶质细胞脂肪酸代谢耦联对正常脑组织免疫微环境的重塑及其机制研究
- 批准号:82373516
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
JAK/STAT3调控星形胶质细胞表型在急性缺血性脑小血管病白质损伤中的作用和机制
- 批准号:82301661
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Functional analysis of an LGN-based visual prosthesis
基于 LGN 的视觉假体的功能分析
- 批准号:
10582766 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
Retinal Ganglion Cell Signaling Regulated By Intrinsic Reactive Oxygen Species
视网膜神经节细胞信号传导受内在活性氧的调节
- 批准号:
10588039 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
The role of non-coding variants in Usher disease
非编码变异在亚瑟病中的作用
- 批准号:
10588508 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
The Underlying Mechanisms of Visual Impairment and Myopia in Prematurity
早产儿视力障碍和近视的潜在机制
- 批准号:
10584723 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
Mechanisms of NMDAR contribution to traumatic injury in retinal ganglion cells
NMDAR对视网膜神经节细胞创伤性损伤的作用机制
- 批准号:
10570666 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别: