Myeloid reprogramming in response to acute radiation tissue damage
响应急性辐射组织损伤的骨髓重编程
基本信息
- 批准号:10375367
- 负责人:
- 金额:$ 34.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdoptive Cell TransfersAdoptive TransferAffectAnimal ModelAntibodiesAppearanceAutomobile DrivingBackBiological MarkersBloodBone MarrowBrainCCL2 geneCellsChestChronicColorComplexDoseEndotoxinsEnvironmentEquilibriumExhibitsExposure toFibrosisFlow CytometryGeneticGoalsGrowth FactorHMGB1 geneHeartHematopoiesisHematopoieticHourHumanImmuneImmune System DiseasesImmune responseIn VitroInfiltrationInflammationInflammatoryInflammatory ResponseInterleukin-6IntestinesLimb structureLungLymphopoiesisMediatingMolecularMusMyelogenousMyeloid CellsMyeloid-derived suppressor cellsMyelopoiesisNormal tissue morphologyOrganPathway interactionsPatientsPatternPeripheralPharmaceutical PreparationsPhenotypePlayProcessProto-Oncogene Protein c-kitRadiationRadiation OncologyRadiation ToxicityRadiation exposureRadiation induced damageRadiation therapyReagentRecoveryRegenerative capacityRoleSerumSeveritiesShapesSignal PathwaySignal TransductionSkinSpleenSystemTLR1 geneTestingTimeTissuesTraumaUncertaintyWhole-Body Irradiationcytokinegranulocytein vivoirradiationloss of functionmindfulnessmonocytemouse modelnovelpreventprogrammed cell death ligand 1programmed cell death protein 1radiation mitigatorradiation responseradiation-induced tissue damageresponseside effectstem cellstooltumor
项目摘要
We have discovered the striking emergence of a novel subpopulation of myeloid cells after whole body and
local irradiation that expresses both granulocytic (Ly6G) and monocytic (Ly6C) lineage markers at high levels.
This immature phenotype is not normally evident in peripheral organs at baseline but is mobilized from bone
marrow myeloerythroid progenitor cells. Their phenotype suggests that they may be granulocyte-derived
myeloid suppressor cells, as does their co-expression of PDL-1, PD-1, and CD39. We hypothesize that they
are an endogenous mechanism to minimize collateral damage from radiation-induced tissue damage and
inflammation. Importantly, depletion of this subset increases vulnerability to hematopoietic acute radiation
syndrome in mice and obliterates the action of radiation mitigator drugs that we have tested.
Our goal is to illuminate the fate and function of these myeloid cells and the role they play in acute and chronic
radiation tissue damage in animal models. We are mindful that myeloid cells tend to be exquisitely sensitive to
rapidly changing environments and that their phenotype and function adapt accordingly; in keeping with the
plasticity that is a hallmark of this lineage. Our hypothesis is that these cells sense and respond to damage-
associated molecules and cytokines released in the aftermath of radiation exposure, that they feed back to the
bone marrow driving self-sustaining loops of inflammation and myeloid lineage reprogramming which skews
the immune balance away from lymphopoiesis and towards myelopoiesis. In the long term, persistent myeloid
skewing affects hematopoiesis and perhaps function of other organs. The most likely culprit for mediating this
rapid radiation-induced myeloid surge is IL-6, but other factors are probably important. We will pursue these
avenues using a tool box of multi-color flow cytometry, Ly6G-depleting antibody, adoptive cell transfer and loss
of function genetic mouse models that will allow us to finely dissect the role of this response in acute and late
radiation damage. As part of the study, we will verify if these cells have inherent radiation mitigating
capabilities. Finally, these cells persist systemically and probably contribute to delayed normal tissue and
tumor responses to radiation therapy. We will therefore determine how they might shape persistent
inflammatory states and immune dysfunction.
With these studies we hope to gain a deeper understanding of the interactions between radiation tissue
damage, immune responses and the recovery processes with the ultimate goal of reprogramming the myeloid
system to better aid balanced normal tissue recovery after localized and whole body radiation exposures.
我们发现继全身和骨髓细胞之后出现了一种新的骨髓细胞亚群
局部照射可高水平表达粒细胞 (Ly6G) 和单核细胞 (Ly6C) 谱系标记。
这种不成熟的表型通常在基线时的外周器官中并不明显,而是从骨骼中动员出来
骨髓骨髓红系祖细胞。它们的表型表明它们可能是粒细胞衍生的
骨髓抑制细胞,以及它们共表达 PDL-1、PD-1 和 CD39 的情况。我们假设他们
是一种内源性机制,可最大限度地减少辐射引起的组织损伤造成的附带损害,
炎。重要的是,该子集的消耗增加了造血急性辐射的脆弱性
小鼠综合症并消除了我们测试过的辐射缓解药物的作用。
我们的目标是阐明这些骨髓细胞的命运和功能以及它们在急性和慢性疾病中所发挥的作用
动物模型中的辐射组织损伤。我们注意到骨髓细胞往往对
快速变化的环境及其表型和功能相应地适应;与
可塑性是这个血统的标志。我们的假设是这些细胞感知损伤并做出反应-
辐射暴露后释放的相关分子和细胞因子,它们反馈到
骨髓驱动炎症和骨髓谱系重编程的自我维持循环,从而扭曲
免疫平衡从淋巴细胞生成转向骨髓生成。从长远来看,持续性骨髓细胞
倾斜会影响造血功能,或许还会影响其他器官的功能。最有可能调解此事的罪魁祸首
辐射引起的快速骨髓细胞激增是 IL-6,但其他因素可能也很重要。我们将追求这些
使用多色流式细胞术、Ly6G 消耗抗体、过继细胞转移和丢失工具箱的途径
功能遗传小鼠模型将使我们能够精细剖析这种反应在急性和晚期的作用
辐射损伤。作为研究的一部分,我们将验证这些细胞是否具有固有的辐射缓解能力
能力。最后,这些细胞会全身持续存在,并可能导致正常组织延迟和
肿瘤对放射治疗的反应。因此,我们将确定它们如何塑造持久的
炎症状态和免疫功能障碍。
通过这些研究,我们希望更深入地了解辐射组织之间的相互作用
损伤、免疫反应和恢复过程,最终目标是重新编程骨髓
系统更好地帮助局部和全身辐射暴露后平衡的正常组织恢复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dorthe Schaue其他文献
Dorthe Schaue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dorthe Schaue', 18)}}的其他基金
Acute radiation injury alters microRNA profiles that predict late tissue-specific damage
急性辐射损伤改变了预测晚期组织特异性损伤的 microRNA 谱
- 批准号:
10088403 - 财政年份:2020
- 资助金额:
$ 34.97万 - 项目类别:
Acute radiation injury alters microRNA profiles that predict late tissue-specific damage
急性辐射损伤改变了预测晚期组织特异性损伤的 microRNA 谱
- 批准号:
10557205 - 财政年份:2020
- 资助金额:
$ 34.97万 - 项目类别:
Acute radiation injury alters microRNA profiles that predict late tissue-specific damage
急性辐射损伤改变了预测晚期组织特异性损伤的 microRNA 谱
- 批准号:
10329926 - 财政年份:2020
- 资助金额:
$ 34.97万 - 项目类别:
Myeloid reprogramming in response to acute radiation tissue damage
响应急性辐射组织损伤的骨髓重编程
- 批准号:
10112746 - 财政年份:2019
- 资助金额:
$ 34.97万 - 项目类别:
Visualizing radiation-induced tumor immune responses
可视化辐射诱导的肿瘤免疫反应
- 批准号:
9908059 - 财政年份:2019
- 资助金额:
$ 34.97万 - 项目类别:
Myeloid reprogramming in response to acute radiation tissue damage
响应急性辐射组织损伤的骨髓重编程
- 批准号:
10583509 - 财政年份:2019
- 资助金额:
$ 34.97万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Escape from CAR T surveillance through lineage plasticity
通过谱系可塑性逃避 CAR T 监控
- 批准号:
10419173 - 财政年份:2022
- 资助金额:
$ 34.97万 - 项目类别:
New insights into the functional diversity of the hepatic antiviral T cell response during hepacivirus infection in vivo
体内肝炎病毒感染期间肝脏抗病毒T细胞反应功能多样性的新见解
- 批准号:
10631150 - 财政年份:2022
- 资助金额:
$ 34.97万 - 项目类别:
Harnessing the thymus for long-term tumor control with hematopoietic stem cell-derived naive CAR T cells
利用造血干细胞衍生的初始 CAR T 细胞利用胸腺来长期控制肿瘤
- 批准号:
10365031 - 财政年份:2022
- 资助金额:
$ 34.97万 - 项目类别:
New insights into the functional diversity of the hepatic antiviral T cell response during hepacivirus infection in vivo
体内肝炎病毒感染期间肝脏抗病毒T细胞反应功能多样性的新见解
- 批准号:
10500968 - 财政年份:2022
- 资助金额:
$ 34.97万 - 项目类别:
Harnessing the thymus for long-term tumor control with hematopoietic stem cell-derived naive CAR T cells
利用造血干细胞衍生的初始 CAR T 细胞利用胸腺来长期控制肿瘤
- 批准号:
10580801 - 财政年份:2022
- 资助金额:
$ 34.97万 - 项目类别: