New requirements for immunity to parasitic pathogens - when vaccines work and why they fail
对寄生虫病原体免疫力的新要求 - 疫苗何时有效以及为何失败
基本信息
- 批准号:9790921
- 负责人:
- 金额:$ 38.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-24 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:A/J MouseATAC-seqAddressAdoptive TransferAffinityAfricanAllelesAnimalsAntibodiesAntibody ResponseAntigenic VariationAntigensB-LymphocytesBindingBloodC57BL/6 MouseCD19 geneCell LineageCellsCellular ImmunityChIP-seqClustered Regularly Interspaced Short Palindromic RepeatsCommunicable DiseasesComplementDNADataDefectDevelopmentElementsEpigenetic ProcessEpitopesExhibitsFailureGene Expression ProfilingGene Expression RegulationGenesGeneticGenetic TranscriptionGiardiaGoalsGrantHumanHydrofluoric AcidIgG3ImmuneImmune SeraImmune systemImmunityImmunoglobulin Class SwitchingImmunoglobulin GImmunoglobulin MImmunologic MemoryImmunologicsImmunologyInbred MouseKnockout MiceMalaria preventionMapsMediatingMembrane ProteinsMemoryMethodsModelingMolecularMorbidity - disease rateMusNatural ImmunityNatureNuclearParasitesParasitic DiseasesParasitologyPassive ImmunizationPlasmodiumPlayPopulationPredispositionPreventionProteinsQuantitative Trait LociRecombinantsReportingResistanceRoleSecondary toSerumSurfaceSurface AntigensT-Independent AntigensTP53 geneToxoplasma gondiiToxoplasmosisTrypanosomaVaccinationVaccinesVariantVirulenceVirulentWorkadaptive immunitycell typeepigenetic regulationexperimental studygenetic analysisgenetic approachmembernovelpathogenpreventresponsesecondary infection
项目摘要
PROJECT SUMMARY
Immunological memory is the ability of our immune system to respond with greater strength and quickness
upon re-encounter with the same pathogen (i.e. secondary infection). Immunological memory is the basis for
vaccination which remains the most successful method for preventing infectious disease. Yet, a fully protective
vaccine that prevents a single human parasitic disease has not been realized to date. Why is immunity to
parasitic pathogens so difficulty to achieve? Our current work on secondary infections with the
apicomplexan parasite, Toxoplasma gondii, suggest that failure of immunological memory responses is
genetically determined. In this grant submission, we have used a forward genetic approach to uncover new
requirements for host immunity to highly virulent strains T. gondii. Both genetic and immunological data
converge on a B-1b cell population that is specifically expanded in resistant mice. This cell type represents a
bridge between innate and adaptive immune immunity, which can recognize both self- and foreign-
antigen. Our central hypothesis is that memory B-1 cells control resistance to challenge with virulent T.
gondii strains, and this response is determined by allelic variation of Nfkbid. IκBNS, encoded by Nfkbid,
is a member of the atypical nuclear regulators of NF-κB-dependent transcription. Nfkbid null mice fail to
develop B-1 cells and antibody responses to T-independent antigens, and as reported here, have massive
defects in producing T. gondii-specific antibodies. Experimental approaches from immunology, genetics and
molecular parasitology will be used to address questions surrounding our central hypothesis. In Aim 1,
adoptive transfer experiments will be performed to delineate protection conferred by the B-1 lineage and the
functional quality of parasite-specific antibodies they produce. In Aim 2, epigenetic approaches are proposed to
study the mechanism by which IκBNS mediates protective B cell responses during a secondary infection. In
Aim 3, we will explore whether antibody responses directed against GPI-moieties on T. gondii surface antigens
explain parasite strain-differences in secondary infection virulence. Antigenic variation is the major mechanism
by which protozoan pathogens such as African Trypanosomes, Plasmodium sp. and Giardia evade B cell-
mediated antibody responses. Surface antigens of T. gondii are highly polymorphic. Immunity conferred by B-1
cells may depend on their ability to produce antibodies that recognize broadly conserved epitopes within
variable surface antigens. Eliciting this response during vaccination could have major bearing on the
prevention of human parasitic disease.
项目概要
免疫记忆是我们的免疫系统以更强的力量和更快的速度做出反应的能力
再次遇到相同的病原体(即继发感染)是免疫记忆的基础。
疫苗接种仍然是预防传染病最成功的方法,也是一种完全保护性的方法。
迄今为止尚未实现预防单一人类寄生虫病的疫苗。
我们目前对继发感染的工作这么难实现吗?
顶复门寄生虫,弓形虫,表明免疫记忆反应失败是
在本次拨款申请中,我们使用了正向遗传方法来发现新的。
宿主对高毒力弓形虫菌株免疫的要求 遗传和免疫学数据。
聚集在抗性小鼠中专门扩增的 B-1b 细胞群上。
先天免疫和适应性免疫之间的桥梁,可以识别自身和外来免疫
我们的中心假设是,记忆 B-1 细胞控制着对有毒 T 攻击的抵抗力。
弓形虫菌株,这种反应是由 Nfkbid 编码的 Nfkbid 等位基因变异决定的。
是 NF-κB 依赖性转录的非典型核调节因子的成员,Nfkbid 缺失小鼠无法表达。
开发 B-1 细胞和针对 T 独立抗原的抗体反应,正如此处报道的,具有大量
免疫学、遗传学和免疫学实验方法在生产弓形虫特异性抗体方面存在缺陷。
分子寄生虫学将用于解决围绕我们的中心假设的问题。
将进行收养转移实验来描绘 B-1 谱系和
在目标 2 中,提出了表观遗传学方法来提高它们产生的寄生虫特异性抗体的功能质量。
研究 IκBNS 在继发感染期间介导保护性 B 细胞反应的机制。
目标 3,我们将探讨抗体反应是否针对弓形虫表面抗原上的 GPI 部分
解释寄生虫毒株继发感染毒力的差异是主要机制。
非洲锥虫、疟原虫和贾第鞭毛虫等原生动物病原体可以逃避 B 细胞。
B-1 介导的抗体反应具有高度多态性。
细胞可能依赖于它们产生抗体的能力,这些抗体识别体内广泛保守的表位
在疫苗接种过程中引发这种反应可能会对疫苗接种产生重大影响。
预防人类寄生虫病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirk David Christian Jensen其他文献
Kirk David Christian Jensen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirk David Christian Jensen', 18)}}的其他基金
New requirements for immunity to parasitic pathogens - when vaccines work and why they fail
对寄生虫病原体免疫力的新要求 - 疫苗何时有效以及为何失败
- 批准号:
10459341 - 财政年份:2018
- 资助金额:
$ 38.11万 - 项目类别:
New requirements for immunity to parasitic pathogens - when vaccines work and why they fail
对寄生虫病原体免疫力的新要求 - 疫苗何时有效以及为何失败
- 批准号:
10469795 - 财政年份:2018
- 资助金额:
$ 38.11万 - 项目类别:
Masters of immunology- how Toxoplasma gondii directly manipulates T cell activation
免疫学大师——弓形虫如何直接操纵T细胞活化
- 批准号:
9917938 - 财政年份:2018
- 资助金额:
$ 38.11万 - 项目类别:
New requirements for immunity to parasitic pathogens - when vaccines work and why they fail
对寄生虫病原体免疫力的新要求 - 疫苗何时有效以及为何失败
- 批准号:
10227131 - 财政年份:2018
- 资助金额:
$ 38.11万 - 项目类别:
相似国自然基金
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
人类胎盘合体滋养层形成分子机制及其与子痫前期发生关联的研究
- 批准号:31900602
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of androgen-dependent Wolffian duct differentiation
雄激素依赖性沃尔夫管分化机制
- 批准号:
10633606 - 财政年份:2023
- 资助金额:
$ 38.11万 - 项目类别:
A democratized platform for mapping the spatial epigenome in tissue
用于绘制组织空间表观基因组图谱的民主化平台
- 批准号:
10822023 - 财政年份:2023
- 资助金额:
$ 38.11万 - 项目类别:
Multimodal omics approach to identify health to cardiometabolic disease transitions
多模式组学方法确定健康状况向心脏代谢疾病的转变
- 批准号:
10753664 - 财政年份:2023
- 资助金额:
$ 38.11万 - 项目类别: