Development of a Next-Generation Nucleic Acid Force Field
下一代核酸力场的开发
基本信息
- 批准号:9789332
- 负责人:
- 金额:$ 29.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAdoptionAlgorithmic SoftwareAlgorithmsAmino AcidsAmoeba genusAntibioticsAnticodonAreaAwardBacterial InfectionsBindingBiologicalBiological PhenomenaBiophysicsBiopolymersChargeChemicalsCollaborationsComplexComputer SimulationComputer softwareCoupledDNADNA Modification ProcessDevelopmentDiagnosticDiseaseDivalent CationsElectrostaticsEnvironmentFutureG-QuartetsGenerationsGrowthInvestigationIonsLeadLettersLifeLigandsMalignant NeoplasmsMedicalMethodsModelingModificationMolecularNatureNormal CellNucleic AcidsNucleosidesNucleotidesOligonucleotidesOligopeptidesOutcomePenetrationPerformancePeriodicityPharmaceutical PreparationsPhysiologicalPlayPotential EnergyPropertyProteinsPublishingRNARNA, Ribosomal, 23SResearch PersonnelResearch Project GrantsRoleSamplingSeriesSodium ChlorideStructural ChemistryStructureSystemTechnologyTherapeuticTherapeutic AgentsThermodynamicsTimeTransfer RNAU2 small nuclear RNAWalkingWorkatomic interactionsbasebehavior predictioncomputer studiescomputerized toolscostdesignexperimental studyhigh end computerimprovedinsightintermolecular interactionlocked nucleic acidmolecular dynamicsmolecular modelingmutantnext generationnovel diagnosticsnovel therapeuticsnucleic acid structureopen sourceparallel computerparallelizationsimulationsimulation softwaresmall moleculesugartool
项目摘要
PROJECT SUMMARY/ABSTRACT
Biomolecular simulation is a critical tool for analysis of biopolymer structure and dynamics,
investigation of intermolecular interactions, and design of new ligands and drugs. Simulation, in
turn, is absolutely dependent on accurate and efficient models of the underlying structural
chemistry and energetics in terms of empirical energy functions (“force fields”). Force field
technology is currently in the midst of a generational transition from traditional atom-based point
charges towards more intricate and accurate potentials using better electrostatic models. This
proposal will continue development of the AMOEBA (Atomic Multipole Optimized Energetics for
Biomolecular Applications) force field for nucleic acids (NAs), and extend the coverage of the
model to naturally and synthetically modified NA components. Coupled with our 2013 AMOEBA
protein parameters, the new NA force field will provide a unified model for the most important
biomolecular systems. Current NA force fields lag well behind their protein counterparts in their
ability to accurately model even the most typical structures under physiological conditions. The
next-generation AMOEBA NA force field promises to significantly improve the fidelity and range
of nucleic acids modeling.
Nucleic acids are the major information carrying molecules of life. Under this research project,
we will investigate several key aspects of nucleic acids, and refine the AMOEBA force field. The
structures and functions of NAs are highly dependent upon the salt environment. The interplay
between RNA local structural dynamics and global/tertiary folding is an intriguing question being
addressed experimentally. The ability to model binding energetics, and design small molecule
drugs and synthetically modified oligonucleotides will be an important growth area for future
medical advances. These studies will be carried out in close collaborations with experimental
colleagues. Development of an accurate and transferable next-generation force field will open
up new paths toward understand and prediction of the behavior of natural and designed nucleic
acid molecules.
Finally, adequate sampling of large structures over longer time scales is crucial for future
molecular simulations. The proposed development of high-performance, open source, parallel
computer software will enable widespread application of the AMOEBA force field to nucleic
acids and related biomolecular systems.
项目摘要/摘要
生物分子模拟是分析生物聚合物结构和动力学的关键工具,
研究分子间相互作用以及新的配体和药物的设计。模拟,IN
转弯,绝对取决于基础结构的准确有效模型
从经验能量功能(“力场”)方面的化学和能量。力场
技术目前正处于从传统基于原子的角度的世代过渡中
使用更好的静电模型向更复杂和准确的电势充电。这
提案将继续开发变形虫(原子多极优化的能量学
核酸(NAS)的生物分子应用),并扩展了覆盖范围
自然和合成修改的Na组件的模型。加上我们的2013年变形虫
蛋白质参数,新的NA力场将为最重要的统一模型提供统一的模型
生物分子系统。当前的NA力场滞后在其蛋白
能够在生理条件下精确建模最典型的结构。
下一代Amoeba NA力场有望显着提高忠诚度和范围
核酸建模。
核酸是携带生命分子的主要信息。在这个研究项目下,
我们将研究核酸的几个关键方面,并改进变形虫力场。
NAS的结构和功能高度依赖于盐环境。相互作用
RNA局部结构动力学与全球/三级折叠之间是一个有趣的问题
通过实验解决。模拟结合能量并设计小分子的能力
药物和合成修饰的寡核苷酸将是未来的重要增长领域
医疗进步。这些研究将与实验密切合作进行
同事。开发准确且可转移的下一代力场将开放
迈出新的途径,以理解和预测自然和设计核的行为
酸分子。
最后,在较长时间尺度上对大型结构进行足够的采样对于将来至关重要
分子模拟。拟议的高性能,开源,平行的开发
计算机软件将使变形虫力场的宽度应用于核。
酸和相关的生物分子系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAY PONDER其他文献
JAY PONDER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAY PONDER', 18)}}的其他基金
Specificity and Selectivity in Protein-Ion Binding
蛋白质-离子结合的特异性和选择性
- 批准号:
10609424 - 财政年份:2015
- 资助金额:
$ 29.01万 - 项目类别:
Specificity and Selectivity in Protein-Ion Binding
蛋白质-离子结合的特异性和选择性
- 批准号:
8860357 - 财政年份:2015
- 资助金额:
$ 29.01万 - 项目类别:
Specificity and Selectivity in Protein-Ion Binding
蛋白质-离子结合的特异性和选择性
- 批准号:
10397564 - 财政年份:2015
- 资助金额:
$ 29.01万 - 项目类别:
Specificity and Selectivity in Protein-Ion Binding
蛋白质-离子结合的特异性和选择性
- 批准号:
9062465 - 财政年份:2015
- 资助金额:
$ 29.01万 - 项目类别:
Specificity and Selectivity in Protein-Ion Binding
蛋白质-离子结合的特异性和选择性
- 批准号:
10569447 - 财政年份:2015
- 资助金额:
$ 29.01万 - 项目类别:
2014 Computational Chemistry Gordon Research Conference & Gordon Research Seminar
2014年计算化学戈登研究会议
- 批准号:
8718250 - 财政年份:2014
- 资助金额:
$ 29.01万 - 项目类别:
Development of a Next-Generation Nucleic Acid Force Field
下一代核酸力场的开发
- 批准号:
10000923 - 财政年份:2013
- 资助金额:
$ 29.01万 - 项目类别:
Development of a Next-Generation Nucleic Acid Force Field
下一代核酸力场的开发
- 批准号:
10242194 - 财政年份:2013
- 资助金额:
$ 29.01万 - 项目类别:
DEVELOPMENT OF A NEXT-GENERATION NUCLEIC ACID FORCE FIELD
下一代核酸力场的开发
- 批准号:
9041607 - 财政年份:2013
- 资助金额:
$ 29.01万 - 项目类别:
DEVELOPMENT OF A NEXT-GENERATION NUCLEIC ACID FORCE FIELD
下一代核酸力场的开发
- 批准号:
8636493 - 财政年份:2013
- 资助金额:
$ 29.01万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 29.01万 - 项目类别:
Core A: Administrative, Career Development, and Research Integration Core
核心 A:行政、职业发展和研究整合核心
- 批准号:
10630466 - 财政年份:2023
- 资助金额:
$ 29.01万 - 项目类别:
Extensible Open Source Zero-Footprint Web Viewer for Cancer Imaging Research
用于癌症成像研究的可扩展开源零足迹 Web 查看器
- 批准号:
10644112 - 财政年份:2023
- 资助金额:
$ 29.01万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 29.01万 - 项目类别: