Cytoskeletal Dynamics of Brain Pericytes and Impact on Capillary Flow
脑周细胞的细胞骨架动力学及其对毛细血管血流的影响
基本信息
- 批准号:9789063
- 负责人:
- 金额:$ 23.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2020-08-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAnimalsBackBasic ScienceBiological AssayBiologyBlood VesselsBlood capillariesBlood flowBrainBrain PathologyCaliberCell LineCellsCerebral cortexCerebrovascular CirculationCerebrovascular DisordersCerebrumChemicalsCoagulation ProcessContractsCytochalasinsCytoskeletonDataDevelopmentEndotheliumErythrocytesExcisionF-ActinFluorescenceFluorescent ProbesG ActinHumanImpairmentIndividualInvestigationIschemiaLeadLightLocationMeasuresMediator of activation proteinMethodologyMethodsMicroinjectionsMusMyosin Light Chain KinaseOpticsPathologicPericytesPharmaceutical PreparationsPharmacologyPre-Clinical ModelPreparationPublic HealthResearchResistanceRho-associated kinaseSignal PathwaySmooth Muscle Actin Staining MethodSmooth Muscle MyocytesSourceStrokeTechniquesTechnologyTestingTherapeuticTranslatingVascular blood supplyarteriolebasebrain cellcapillary bedcell typecerebral capillarycerebral microvasculaturecerebrovascularconstrictiondrug testingelectric impedanceimprovedin vivoinhibitor/antagonistjasplakinolidemonomermouse modelmultiphoton imagingnoveloptogeneticspolymerizationpressurepreventresponsestroke modeltwo-photon
项目摘要
Project summary.
Cerebral pericytes are specialized mural cells that line the entire cerebrovascular capillary bed. The
concept that pericytes are contractile and have the capacity control capillary flow dates back to their
discovery in the 1890s. Yet, due to a lack of methods to target and manipulate pericytes in vivo, this
facet of pericyte biology has remained highly understudied. It is imperative to understand pericyte
contractility because many human and animal studies have demonstrated insufficiency in capillary flow
during stroke, with aberrant constriction of capillaries being a likely contributor. Modulating the
contractile ability of pericytes may represent a valuable therapeutic approach to improve cerebral blood
supply during ischemia, and a means to further improve the efficacy of existing clot-removal treatments.
Currently, little is known about the signaling pathways involved in pericyte contraction. Recent studies
have shown that the vast majority of pericytes that line the brain capillary bed are negative for α-
smooth muscle actin (α-SMA), which is central to actomyosin-based contraction of smooth muscle cells
of arterioles. Yet, our preliminary data suggest that these α-SMA-negative pericytes retain the ability to
contract in vivo and can impede capillary flow, pointing to an alternative contractile mechanism. Our
central hypothesis is that brain capillary pericytes can contract through dynamic actin
cytoskeleton reorganization, rather than actomyosin cross-bridge cycling. We test this hypothesis
by combining pharmacology with a novel optogenetic assay to activate individual capillary pericytes in a
“cause and effect” manner both in vivo and ex vivo. In Aim 1, we will test whether drugs that inhibit or
promote actin polymerization can alter optogenetically-induced pericyte contraction in the brains of live
mice. We will further test these drugs on pericyte contractility in an ex vivo, pressurized arteriole-to-
capillary preparation to exclude indirect actions from non-vascular brain cells. In Aim 2, we directly
visualize actin polymerization in capillary pericytes in the normal and ischemic brain in vivo. We will
express Lifeact-GFP, a novel fluorescent probe for F-actin, specifically in vascular mural cells and
examine whether F-actin content increases in pericytes prior to pathological capillary constriction. This
project will shed light on capillary pericyte cytoskeletal dynamics and its relation to capillary flow, an
aspect of pericyte biology that is highly understudied in the brain microvasculature in vivo. If successful,
our findings will help to establish the rationale, methodologies, and mouse models for further
investigations of how pericyte cytoskeletal dynamics are involved in capillary flow impairment during
stroke and related brain pathologies.
项目摘要。
脑周细胞是整个脑血管毛细血管床的专门壁细胞。这
周细胞是收缩的概念,并具有能力控制毛细管流程的历史
1890年代的发现。但是,由于缺乏靶向和在体内操纵周细胞的方法,这
周围生物学的方面始终广为人知。必须了解周细胞
收缩力是因为许多人类和动物研究表明毛细血管流不足
在中风期间,毛细血管的异常收缩可能是可能的贡献者。调节
周细胞的收缩能力可能代表一种有价值的治疗方法来改善脑血液
缺血期间的供应,以及进一步提高现有凝块脱毛处理效率的手段。
目前,关于周围收缩涉及的信号通路知之甚少。最近的研究
已经表明,脑毛细管床的绝大多数周细胞对于α-均为阴性
平滑肌肌动蛋白(α-SMA),这对于平滑肌细胞的基于肌动蛋白的收缩至关重要
小动脉。然而,我们的初步数据表明,这些α-SMA阴性周细胞保留了能力
体内收缩并可能阻碍毛细管流,指出另一种收缩机制。我们的
中心假设是脑毛细管周细胞可以通过动态肌动蛋白收缩
细胞骨架重组,而不是肌动菌素跨桥循环。我们检验了这个假设
通过将药理学与新型的光遗传学测定相结合,以激活A中的单个毛细血管周细胞
体内和体内的“因果和效应”。在AIM 1中,我们将测试抑制或
促进肌动蛋白聚合可以改变现场大脑中的光源性周细胞收缩
老鼠。我们将进一步测试这些药物在离体中的周细胞收缩性上
毛细血管制备以排除非血管脑细胞的间接作用。在AIM 2中,我们直接
可视化体内正常和缺血性脑中毛细血管周细胞中的肌动蛋白聚合。我们将
Express LifeAct-GFP,一种用于F-肌动蛋白的新型荧光探针,特别是在血管壁细胞和
检查在病理毛细收缩之前,F-肌动蛋白含量是否增加。这
项目将阐明毛细血管周细胞骨架动力学及其与毛细管流的关系
周围生物学的方面在体内在脑微脉管系统中得到了高度理解。如果成功,
我们的发现将有助于建立基本原理,方法和鼠标模型,以进一步
对周围细胞骨架动力学如何参与毛细血管流动障碍的研究
中风和相关的大脑病理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andy Y Shih其他文献
Andy Y Shih的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andy Y Shih', 18)}}的其他基金
In vivo two-photon imaging of vascular invasion and stem cell translocation in calvarial bone
颅骨血管侵袭和干细胞易位的体内双光子成像
- 批准号:
10603163 - 财政年份:2023
- 资助金额:
$ 23.54万 - 项目类别:
Pericyte control of capillary perfusion in the Alzheimer's disease brain
阿尔茨海默病大脑中毛细血管灌注的周细胞控制
- 批准号:
10655813 - 财政年份:2023
- 资助金额:
$ 23.54万 - 项目类别:
Brain Drain: In Vivo Optical Interrogation of Venular Function in Gray and White Matter
脑流失:灰质和白质中小静脉功能的体内光学询问
- 批准号:
10463455 - 财政年份:2022
- 资助金额:
$ 23.54万 - 项目类别:
Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
- 批准号:
10374139 - 财政年份:2020
- 资助金额:
$ 23.54万 - 项目类别:
Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
- 批准号:
10163765 - 财政年份:2020
- 资助金额:
$ 23.54万 - 项目类别:
Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
- 批准号:
9894994 - 财政年份:2020
- 资助金额:
$ 23.54万 - 项目类别:
Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
- 批准号:
10576299 - 财政年份:2020
- 资助金额:
$ 23.54万 - 项目类别:
Pericyte structural plasticity and cerebrovascular health
周细胞结构可塑性与脑血管健康
- 批准号:
10783214 - 财政年份:2020
- 资助金额:
$ 23.54万 - 项目类别:
Optical Interrogation of Venular Function in Cerebral Gray and White Matter
大脑灰质和白质中静脉功能的光学询问
- 批准号:
10221601 - 财政年份:2020
- 资助金额:
$ 23.54万 - 项目类别:
Diversity Supplement: Pericyte structural plasticity and cerebrovascular health
多样性补充:周细胞结构可塑性与脑血管健康
- 批准号:
10605744 - 财政年份:2020
- 资助金额:
$ 23.54万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
丙酮酸激酶催化肌动球蛋白磷酸化调控肉嫩度的分子机制
- 批准号:32372263
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:32172242
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
Molecular and Cell Biological Foundations of Proteostress-Induced Neuronal Extrusion
蛋白质应激诱导的神经元挤压的分子和细胞生物学基础
- 批准号:
10753902 - 财政年份:2023
- 资助金额:
$ 23.54万 - 项目类别:
Dissecting the role of Aurora A kinase in patterning the cell cortex during cytokinesis.
剖析 Aurora A 激酶在胞质分裂过程中细胞皮质模式化中的作用。
- 批准号:
10634513 - 财政年份:2022
- 资助金额:
$ 23.54万 - 项目类别:
Single-component optogenetic tools to bidirectionally control RhoA in mechanotransduction
在力转导中双向控制 RhoA 的单组分光遗传学工具
- 批准号:
10521872 - 财政年份:2022
- 资助金额:
$ 23.54万 - 项目类别:
Dissecting the role of Aurora A kinase in patterning the cell cortex during cytokinesis.
剖析 Aurora A 激酶在胞质分裂过程中细胞皮质模式化中的作用。
- 批准号:
10387229 - 财政年份:2022
- 资助金额:
$ 23.54万 - 项目类别:
Control of collective cell movement by planar cell polarity signaling
通过平面细胞极性信号控制集体细胞运动
- 批准号:
10225582 - 财政年份:2020
- 资助金额:
$ 23.54万 - 项目类别: