Comparison of molecular factors to drug activities
分子因素与药物活性的比较
基本信息
- 批准号:9556847
- 负责人:
- 金额:$ 14.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AffectiveAlgorithmsAlkylating AgentsAntineoplastic AgentsBioinformaticsBiologicalBleomycinCancer PatientCancer cell lineCell LineCladribineClinical TrialsComplexComputational TechniqueComputer softwareCore-Binding FactorDNA DamageDNA MethylationDNA RepairDNA Repair GeneDNA Synthesis InhibitorsDNA biosynthesisDataDatabasesDiseaseDrug CompoundingDrug effect disorderEGFR geneEpidermal Growth Factor Receptor Tyrosine Kinase InhibitorEpigenetic ProcessErlotinibEventFDA approvedGene DosageGenesGeneticGenomicsGoalsImageryKnowledgeLeadMDM2 geneMachine LearningMalignant NeoplasmsMathematicsMethodologyMicroRNAsMolecularMolecular ProfilingOutcomePTEN genePathway interactionsPatternPharmaceutical PreparationsPharmacologyPharmacology StudyPrediction of Response to TherapyRAD52 geneRas/RafResourcesStructureSystemTP53 geneTechniquesThinnessTopoisomeraseTopoisomerase-I InhibitorTranscriptVariantanalytical methodbasecancer therapycell growthdisorder subtypeexome sequencinggenetic variantgenomic profilesinfancyinhibitor/antagonistleukemiamathematical methodsmutational statusnovelresponsetool
项目摘要
Cancer is a disease that emerges though genetic and epigenetic alterations that perturb molecular networks controlling cell growth, survival, and differentiation. To develop more targeted and efficacious cancer treatments, it is essential to situate and understand drug actions in this networked, systems-level context. For most anti-cancer drugs, only partial knowledge exists about the detailed mechanism of action. Even where targets have been defined, as with FDA-approved and in-clinical-trial drugs, broader off-target effects are often poorly understood. Compound activity and genomic profiling data over well-characterized cell line panels allows one to attempt computational prediction of molecular drug response determinants. However, these computational techniques exist in a continuum of complexity, and each has its assets and shortcomings. We have and will use a combination of approaches ranging from the simple to the complex. We employ Pearson's or Spearman's, or Matthew's correlation-based approaches that can identify genomic features with cell line profiles that are significantly correlated with a compounds activity profile. This methodology has demonstrated the ability to recognize robustly correlated parameters. They are employed in our CellMiner "Pattern comparison", "Cross correlation", "Genetic variant summation", "Genetic variant versus drug visualization", and "Cell line signature" tools. In addition, we use state-of-the-art mathematical techniques to compare our large drug compound database to our extensive network of molecular factors using the NCI-60 cancer cell lines. Included are the elastic net regression algorithm (a machine learning approach) to identify robust, cumulative predictors of drug response. Included in this analysis are gene and microRNA transcript expression, gene copy number, gene sequence variation, and soon DNA methylation status. Pathway enrichment analysis for those identified molecular factors with significantly correlated molecular profiles may be applied. The selection of which analytical method to use to identify biologically-related events is not settled or simplistic. It is influenced by the biological question being asked, the level of biological knowledge available, and the strengths, weaknesses, and applicability of each mathematical approach. It remains a field in it's infancy. Among our previous successfully identified list of molecular-pharmacological associations are i) SLFN11 transcript expression for topoisomerase 1 and 2 inhibitors, alkylating agents, and DNA synthesis inhibitors ii) the identification of Ro5-3335 as a lead compound for Core Binding Factor leukemias iii) TP53 mutational status and the activity of the MDM2-TP53 interaction inhibitor nutlin iv) a multifactorial combination of ERBB1 and 2 expression and RAS-RAF-PTEN mutational status for the activity of erlotinib v) ATAD5 mutational status for the DNA-damaging drugs bleomycin, zorbamycin, and peplomycin vi) genetic variants for the DNA replication and repair gene vi) MUS81 with the DNA synthesis inhibitor cladribine, and vii) genetic variants for the DNA damage repair gene RAD52 for the DNA damaging ifosfomide.
癌症是一种疾病,它会出现遗传和表观遗传学改变,该疾病会扰动分子网络控制细胞生长,生存和分化。为了开发更有针对性和有效的癌症治疗,在这种网络,系统级别的环境中进行局部和了解药物作用至关重要。对于大多数抗癌药物,只有有关详细作用机理的部分知识。即使定义了目标,就像FDA批准和临床上的审判药物一样,更广泛的脱靶效应通常也很熟悉。在特征良好的细胞系板上的复合活性和基因组分析数据允许人们尝试对分子药物反应决定因素的计算预测。但是,这些计算技术存在于复杂性的连续性中,并且每个计算技术都有其资产和缺点。我们已经并且将使用从简单到复杂的方法的组合。我们采用Pearson或Spearman的或Matthew基于相关的方法,这些方法可以识别具有与化合物活性概况显着相关的细胞系特征的基因组特征。该方法证明了能够识别牢固相关参数的能力。它们在我们的Cellminer“模式比较”,“跨相关”,“遗传变异总和”,“遗传变异与药物可视化”和“细胞系签名”工具中使用。此外,我们使用最先进的数学技术将我们的大型药物化合物数据库与我们使用NCI-60癌细胞系的广泛分子因素网络进行比较。其中包括弹性净回归算法(一种机器学习方法),以识别药物反应的稳健,累积预测指标。该分析中包括基因和microRNA转录本,基因拷贝数,基因序列变异以及很快的DNA甲基化状态。可以应用具有显着相关分子谱的分子因子的途径富集分析。选择用于识别生物学相关事件的分析方法的选择不是解决或简单的。它受到所提出的生物学问题的影响,可用的生物学知识水平以及每种数学方法的优势,劣势和适用性。它仍然是婴儿期的一个领域。在我们先前成功识别的分子 - 药理学关联列表中,i)tososomerase 1和2抑制剂的SLFN11转录表表达,烷基化剂和DNA合成抑制剂II)识别RO5-3335作为核心结合因子Leukemias iii III III III III III III III III III III III III III IIDINDIND TP的识别,并将其识别为TP5的铅含量。 Nutlin IV)ERBB1和2表达和RAS-RAF-PTEN突变状态的多因素组合,用于Erlotinib v)ATAD5 aTAD5突变状态的DNA损伤药物博霉素,Zorbamycin,Zorbamycin,Zorbamycin和peplomycin vi和peplomycin vi)的遗传变异与DNA复制的遗传变异和修复基因vi vi的遗传变异。 Cladribine和VII)用于DNA损伤RAD52的遗传变异,用于DNA损害Ifosfomide。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Reinhold其他文献
William Reinhold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Reinhold', 18)}}的其他基金
Clustering of the drug activities of the NCI-60 cancerous cell lines
NCI-60 癌细胞系药物活性的聚类
- 批准号:
8763783 - 财政年份:
- 资助金额:
$ 14.22万 - 项目类别:
Comparison of molecular factors to drug activities.
分子因素与药物活性的比较。
- 批准号:
8938487 - 财政年份:
- 资助金额:
$ 14.22万 - 项目类别:
Genomics and Bioinformatics Group web site development and maintenance.
基因组学和生物信息学组网站开发和维护。
- 批准号:
9154337 - 财政年份:
- 资助金额:
$ 14.22万 - 项目类别:
Development of novel molecular or phenotypic databases
开发新型分子或表型数据库
- 批准号:
10262772 - 财政年份:
- 资助金额:
$ 14.22万 - 项目类别:
Comparative genomic hybridization data and web-based tool for the NCI-60
NCI-60 的比较基因组杂交数据和基于网络的工具
- 批准号:
8763782 - 财政年份:
- 资助金额:
$ 14.22万 - 项目类别:
DNA data development for cancer cell lines and patients
癌细胞系和患者的 DNA 数据开发
- 批准号:
10926648 - 财政年份:
- 资助金额:
$ 14.22万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular biomarkers of future aggressive behavior in pituitary tumors
垂体瘤未来攻击行为的分子生物标志物
- 批准号:
10650948 - 财政年份:2023
- 资助金额:
$ 14.22万 - 项目类别:
Rule-based machine learning to address heterogeneity in high-dimensional survival data
基于规则的机器学习解决高维生存数据的异质性
- 批准号:
10478828 - 财政年份:2021
- 资助金额:
$ 14.22万 - 项目类别:
Integrative statistical models for TNBC biomarker discovery
TNBC 生物标志物发现的综合统计模型
- 批准号:
9314546 - 财政年份:2016
- 资助金额:
$ 14.22万 - 项目类别:
Hypermutation and malignant progression in an expanded cohort of TMZ treated LGG patients from different molecular subgroups
来自不同分子亚组的接受 TMZ 治疗的 LGG 患者扩大队列中的超突变和恶性进展
- 批准号:
9252225 - 财政年份:2016
- 资助金额:
$ 14.22万 - 项目类别:
Quantitative MRSI for the prediction of response to chemoradiation therapy in GBM
定量 MRSI 用于预测 GBM 放化疗反应
- 批准号:
8820073 - 财政年份:2014
- 资助金额:
$ 14.22万 - 项目类别: