3D Models of Immunotherapy
免疫疗法的 3D 模型
基本信息
- 批准号:9283025
- 负责人:
- 金额:$ 57.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdjuvantAngiogenic FactorAnimalsAntigen-Presenting CellsAntigensAwardBiocompatible MaterialsBiological ModelsBlocking AntibodiesBlood VesselsCancer VaccinesCancerousCell CommunicationCell Culture TechniquesCell physiologyCell surfaceCellsCellular biologyCessation of lifeComplementCytotoxic T-Lymphocyte-Associated Protein 4Cytotoxic T-LymphocytesDendritic CellsDevelopmentDevicesDistantExperimental ModelsFailureFutureGene ExpressionGenerationsHumanHuman BiologyImmuneImmune responseImmunotherapyImpairmentIn VitroMalignant NeoplasmsModelingMusNeoplasms in Vascular TissuePatientsPerfusionPhase I Clinical TrialsPre-Clinical ModelPrintingRoleSiteT-LymphocyteTestingTherapeuticTherapeutic AgentsTissuesVaccinationVaccinesWorkantitumor effectbasecancer immunotherapyhumanized mouseimmune checkpoint blockadeimmune functionimmunoregulationin vitro Modelin vivolymph nodesmelanomamouse modelneoplastic cellnovelnovel vaccinespreclinical studyresponsesuccesstherapeutic vaccinethree-dimensional modelingtooltraffickingtumorvaccination strategy
项目摘要
Cancer immunotherapy is currently providing exciting new treatment options for patients. However, the majority
of patients still do not respond to current immunotherapies, and this failure likely results, at least in part, from
an inability to generate potent cytotoxic T lymphocyte (CTL) responses against cancer antigens, and the
tolerizing effects of the tumors. Therapeutic vaccines may be needed to generate robust CTL responses, and
we have recently developed a new biomaterials strategy for vaccination that led to unprecedented ability to
eradicate established tumors in preclinical models. However, the development of next generation vaccines
based on this concept, and therapeutic cancer vaccines more generally, is significantly impaired by the
limitations of current model systems available to explore and test these types of therapies. Preclinical studies
typically utilize mouse models, but even humanized mouse models do not capture key aspects of human
biology relevant to immunotherapies. Cell culture studies can be used to explore human immune cell biology,
but standard human cell culture models do not recreate the 3D, multicellular interactions that direct the immune
response against cancer nor the tumor cell-immune cell interactions that dictate vaccination success. This
application proposes to create 3D models of human biology that enable one to study key aspects of
vaccination. These models will replicate, in vitro, the vaccine site itself, where the immune response to cancer
antigens is initiated, and the tumor, where immune cells encounter cancerous cells, and the function of the
immune cells is typically down-regulated by the cells within the tumor. In order to thoroughly characterize and
validate our approach, we will first create 3D mouse models of the vaccine site and the tumor, as this will allow
direct comparison between the 3D in vitro model and the in vivo tissue of the same type. These studies will be
key to validate the models. We will then create the human models, using tumor, vascular and immune cells all
derived from the same patient. These human models will be used to begin exploring several key issues in
therapeutic cancer vaccination, including the role of checkpoint blockade and angiogenic factors on the tumors,
and the impact of vaccination intratumorally on the immune cell response. At the completion of this project we
will have developed and thoroughly characterized novel, 3D models of both mouse and human biology that will
replicate the vaccination site and vascularized tumors. These models will allow us to explore key questions
relevant to human cancer immunotherapy, and provide a means to screen the impact of immunomodulatory
agents (e.g., various adjuvants) in the future as we and others develop new cancer immunotherapies.
癌症免疫疗法目前正在为患者提供令人兴奋的新治疗选择。但是,大多数
患者中仍然没有对当前的免疫疗法反应
无法产生对癌症抗原的有效细胞毒性T淋巴细胞(CTL)反应,
肿瘤的耐受作用。可能需要治疗疫苗来产生强大的CTL反应,并且
我们最近制定了一种新的生物材料疫苗策略,这导致了前所未有的能力
根除临床前模型中已建立的肿瘤。但是,下一代疫苗的开发
基于这个概念和治疗性癌症疫苗,更普遍地受到了严重损害
当前模型系统可用于探索和测试这些类型的疗法的局限性。临床前研究
通常使用鼠标模型,但即使人性化的鼠标模型也不会捕获人类的关键方面
与免疫疗法有关的生物学。细胞培养研究可用于探索人类免疫细胞生物学,
但是标准的人类细胞培养模型并没有重现指导免疫的3D多细胞相互作用
对癌症的反应或决定疫苗接种成功的肿瘤细胞免疫细胞相互作用。这
应用建议创建人类生物学的3D模型,使人们能够研究
疫苗接种。这些模型将在体外复制疫苗部位本身,其中对癌症的免疫反应
启动抗原,肿瘤,免疫细胞会遇到癌细胞,以及
免疫细胞通常由肿瘤内的细胞下调。为了彻底表征和
验证我们的方法,我们将首先创建疫苗部位和肿瘤的3D小鼠模型,因为这将允许
3D体外模型与相同类型的体内组织之间的直接比较。这些研究将是
验证模型的关键。然后,我们将使用肿瘤,血管和免疫细胞创建人类模型
来自同一患者。这些人类模型将用于开始探索几个关键问题
治疗性癌症疫苗接种,包括检查点阻滞和血管生成因子在肿瘤中的作用,
肿瘤内疫苗接种对免疫细胞反应的影响。该项目完成时,我们
将开发并彻底表征小鼠和人类生物学的新颖的3D模型
复制疫苗接种部位和血管化肿瘤。这些模型将使我们能够探索关键问题
与人类癌症免疫疗法相关,并提供了一种筛查免疫调节影响的方法
随着我们和其他人发展新的癌症免疫疗法,代理(例如各种辅助者)将来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FRANK S HODI其他文献
FRANK S HODI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FRANK S HODI', 18)}}的其他基金
Bevacizumab plus Ipilimumab in Unresectable Stage III or Stage IV Melanoma
贝伐珠单抗加伊匹单抗治疗不可切除的 III 期或 IV 期黑色素瘤
- 批准号:
8081790 - 财政年份:2010
- 资助金额:
$ 57.44万 - 项目类别:
Bevacizumab plus Ipilimumab in Unresectable Stage III or Stage IV Melanoma
贝伐珠单抗加伊匹单抗治疗不可切除的 III 期或 IV 期黑色素瘤
- 批准号:
7892847 - 财政年份:2010
- 资助金额:
$ 57.44万 - 项目类别:
CTLA-4 Blockade in GM-CSF Vaccinated Patients
GM-CSF 疫苗接种患者中的 CTLA-4 阻断
- 批准号:
6802868 - 财政年份:2003
- 资助金额:
$ 57.44万 - 项目类别:
CTLA-4 Blockade in GM-CSF Vaccinated Patients
GM-CSF 疫苗接种患者中的 CTLA-4 阻断
- 批准号:
6740055 - 财政年份:2003
- 资助金额:
$ 57.44万 - 项目类别:
MELANOMA ANTIGENS INDENTIFIED FROM GMCSF VACCINATION
从 GMCSF 疫苗接种中鉴定出黑色素瘤抗原
- 批准号:
2896665 - 财政年份:1998
- 资助金额:
$ 57.44万 - 项目类别:
MELANOMA ANTIGENS INDENTIFIED FROM GMCSF VACCINATION
从 GMCSF 疫苗接种中鉴定出黑色素瘤抗原
- 批准号:
6174369 - 财政年份:1998
- 资助金额:
$ 57.44万 - 项目类别:
MELANOMA ANTIGENS INDENTIFIED FROM GMCSF VACCINATION
从 GMCSF 疫苗接种中鉴定出黑色素瘤抗原
- 批准号:
2689918 - 财政年份:1998
- 资助金额:
$ 57.44万 - 项目类别:
MELANOMA ANTIGENS INDENTIFIED FROM GMCSF VACCINATION
从 GMCSF 疫苗接种中鉴定出黑色素瘤抗原
- 批准号:
6522454 - 财政年份:1998
- 资助金额:
$ 57.44万 - 项目类别:
相似国自然基金
穿透性靶向胰腺癌内cDC1的纳米佐剂调控溶酶体逃逸促进放疗诱导ICD的机制研究
- 批准号:82303680
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多级改造的工程化外泌体自佐剂疫苗平台实现鼻上皮细胞感染拟态和粘膜递送的研究
- 批准号:32371440
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
展示PD-L1抗体的纳米锰佐剂联合放疗以诱导原位肿瘤疫苗的产生及其机制的探究
- 批准号:32371518
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向FPPS的双磷酸疫苗佐剂的开发
- 批准号:82341040
- 批准年份:2023
- 资助金额:100 万元
- 项目类别:专项基金项目
应用于冠状病毒广谱疫苗开发的新型全链式免疫增强型佐剂研究
- 批准号:82341036
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
相似海外基金
Elucidation of novel anti-angiogenic therapies for the prevention and treatment of neovascular glaucoma
阐明预防和治疗新生血管性青光眼的新型抗血管生成疗法
- 批准号:
10491662 - 财政年份:2021
- 资助金额:
$ 57.44万 - 项目类别:
Elucidation of novel anti-angiogenic therapies for the prevention and treatment of neovascular glaucoma
阐明预防和治疗新生血管性青光眼的新型抗血管生成疗法
- 批准号:
10706506 - 财政年份:2021
- 资助金额:
$ 57.44万 - 项目类别: