The role of nucleases in interstrand crosslink repair
核酸酶在链间交联修复中的作用
基本信息
- 批准号:9208149
- 负责人:
- 金额:$ 42.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-02-01 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:ALS patientsAcuteAffectAnemiaAttentionBindingBiochemicalBlood PlateletsBone MarrowCell CycleCell Cycle StageCell DeathCell LineCell physiologyCellsChronic Kidney FailureComplexCruciform DNADNADNA DamageDNA RepairDNA Repair PathwayDNA lesionDataDevelopmentDialysis procedureDiseaseEnzymesErythrocytesEventFailureFanconi Anemia pathwayFanconi anemia proteinFanconi&aposs AnemiaFunctional disorderGenesGeneticGenetic MaterialsGenetic RecombinationGenetic TranscriptionGenetic studyGenome StabilityGoalsGrantGrowthHead and Neck CancerHealthHemorrhageHereditary DiseaseHolliday Junction ResolvasesHuman GeneticsIn VitroInfectionInsect ProteinsInternationalInterstitial NephritisKidneyKidney FailureKidney TransplantationKnowledgeLaboratory StudyLeadLesionLeukocytesLinkMalignant Female Reproductive System NeoplasmMalignant NeoplasmsModelingMolecularMorphologyMutateMutationMyelogenousOrganOutcomeOxygenPancytopeniaPathogenesisPathway interactionsPatientsPredispositionProcessProteinsRare DiseasesRegistriesRegulationRoleS PhaseScaffolding ProteinSiteSubstrate SpecificityTestingTherapeuticToxic Environmental SubstancesTravelUnited StatesWorkage relatedcancer diagnosiscancer therapychemotherapycrosslinkdisorder preventionexperimental studyfightinggenetic approachin vivonucleasepreventpublic health relevancerepairedresponsescaffoldskeletaltool
项目摘要
DESCRIPTION (provided by applicant): Damage to the genetic material of our cells can have many undesired consequences. It may lead to cell death, growth arrest, inappropriate growth or mutations. The outcomes of these on the organismal levels are failure of essential organ function or cancer. Rare human genetic diseases have enlightened us about how lack of DNA repair and thus persistence of DNA damage in our cells leads to these problems. Our laboratory studies two DNA repair diseases, Fanconi anemia (FA) and Karyomegalic Interstitial Nephritis (KIN). Patients with FA have developmental abnormalities including skeletal anomalies and bone marrow failure, which leaves them unable to produce enough red blood cells to carry oxygen, platelets to prevent bleeding or white blood cells to fight off infections. FA patients als have a very high predisposition to developing cancer including acute myelogenous anemia that occurs paradoxically in the setting of the bone marrow failure, head and neck cancers, and gynecologic cancers. KIN patients develop kidney failure and need dialysis and kidney transplantation. Although rare, these diseases can be used as powerful models for understanding how bone marrow and kidneys fail, and how cancer develops when the DNA is not repaired. We strive to understand the molecular underpinnings of these diseases, connections and differences between them. Even though the patients with the two diseases show different health problems, the cells from the patients lack the ability to repair a very particular type of DNA damage, interstrand crosslink, which links the two strands of DNA together precluding their separation. This kind of damage may be caused by environmental toxins, metabolites from cellular processes or by chemotherapy during cancer treatment. In this grant, we propose to concentrate our attention on the nucleases involved in processing of the interstrand crosslinks. We have identified SLX4 mutations in three patients with Fanconi anemia in the International Fanconi anemia registry. With our collaborators, we have described FAN1 mutations in KIN patients. In the first two aims we propose to use the patient cell lines to understand the pathogenesis of the two diseases. Using molecular approaches we want to understand the interaction of SLX4- bound nucleases as well as FAN1, their different requirements across cell cycle and across different DNA lesions and how they genetically interact with other DNA repair pathways in the cell. In the third aim, we will take a biochemical approach to understand these nucleases. Performing in vitro experiments, we want to study how they work on damaged DNA. Our goal is to have a detailed picture of how the cell deals with crosslinks in hopes of manipulating the repair pathways for therapeutic applications.
描述(由申请人提供):对我们细胞的遗传物质的损害可能会带来许多不希望的后果。它可能导致细胞死亡,生长停滞,不适当的生长或突变。这些在生物水平上的结果是基本器官功能或癌症的失败。罕见的人类遗传疾病为我们启发了我们关于缺乏DNA修复以及细胞中DNA损伤的持续性如何导致这些问题的启发。我们的实验室研究两种DNA修复疾病,即富康尼贫血(FA)和核瘤间质肾炎(KIN)。 FA患者具有发育异常,包括骨骼异常和骨髓衰竭,这使他们无法产生足够的红细胞来携带氧气,血小板以防止出血或白细胞抗击感染。 FA患者对发展癌症的倾向很高,包括急性脊髓性贫血,在骨髓衰竭,头颈癌和妇科癌症的环境中矛盾地发生。亲属患者会出现肾衰竭,需要透析和肾脏移植。尽管很少见,但是这些疾病可以用作了解骨髓和肾脏如何失败的强大模型,以及当未修复DNA时癌症如何发展。我们努力理解这些疾病,连接及其之间差异的分子基础。即使患有两种疾病的患者显示出不同的健康问题,但患者的细胞缺乏修复非常特殊的DNA损伤,链间交叉链接的能力,这将DNA的两条链连接在一起,无法将其排除在外。这种损害可能是由环境毒素,细胞过程的代谢产物或癌症治疗期间化学疗法引起的。在这项赠款中,我们建议将注意力集中在链间交联处理所涉及的核酸酶上。我们已经确定了三个国际芬科尼贫血注册表中三个芬科尼贫血患者的SLX4突变。与我们的合作者一起,我们描述了亲属患者的FAN1突变。在前两个目标中,我们建议使用患者细胞系了解两种疾病的发病机理。使用分子方法,我们希望了解SLX4结合核酸酶以及FAN1的相互作用,它们在整个细胞周期和不同的DNA病变之间的不同需求以及它们如何与细胞中其他DNA修复途径进行遗传相互作用。在第三个目标中,我们将采用生化方法来理解这些核酸酶。进行体外实验,我们想研究它们如何在受损的DNA上工作。我们的目标是详细了解细胞如何处理交联,以希望操纵治疗应用的维修途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Agata Smogorzewska其他文献
Agata Smogorzewska的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Agata Smogorzewska', 18)}}的其他基金
Understanding Replication Stress Response in Mammalian Cells
了解哺乳动物细胞的复制应激反应
- 批准号:
10689130 - 财政年份:2021
- 资助金额:
$ 42.38万 - 项目类别:
Understanding Replication Stress Response in Mammalian Cells
了解哺乳动物细胞的复制应激反应
- 批准号:
10491038 - 财政年份:2021
- 资助金额:
$ 42.38万 - 项目类别:
Functions of human RAD51 and its paralogs during DNA interstrand crosslink repair
人类 RAD51 及其旁系同源物在 DNA 链间交联修复过程中的功能
- 批准号:
9399639 - 财政年份:2017
- 资助金额:
$ 42.38万 - 项目类别:
The role of nucleases in interstrand crosslink repair
核酸酶在链间交联修复中的作用
- 批准号:
8612988 - 财政年份:2014
- 资助金额:
$ 42.38万 - 项目类别:
The role of nucleases in interstrand crosslink repair
核酸酶在链间交联修复中的作用
- 批准号:
8792867 - 财政年份:2014
- 资助金额:
$ 42.38万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SSRP1/Sp-1转录调控的MFGE8通过SIRT6影响铁死亡在脓毒症急性肾损伤中的机制研究
- 批准号:82302418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人群mtDNA空间异质性对急性高原反应发病的影响机制研究
- 批准号:42377466
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高甘油三酯通过TLR4/caspase-8影响急性胰腺炎CD4+T细胞程序性死亡的机制研究
- 批准号:82360135
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Spatiotemporal analysis of TDP-43 toxicity and endolysosomal turnover mechanisms
TDP-43毒性和内溶酶体周转机制的时空分析
- 批准号:
10626673 - 财政年份:2022
- 资助金额:
$ 42.38万 - 项目类别:
Understanding the relationships between FUS-BBB opening, neuroinflammation and the neurovascular response
了解 FUS-BBB 打开、神经炎症和神经血管反应之间的关系
- 批准号:
10043011 - 财政年份:2020
- 资助金额:
$ 42.38万 - 项目类别:
Understanding the relationships between FUS-BBB opening, neuroinflammation and the neurovascular response
了解 FUS-BBB 打开、神经炎症和神经血管反应之间的关系
- 批准号:
10251997 - 财政年份:2020
- 资助金额:
$ 42.38万 - 项目类别:
Understanding the relationships between FUS-BBB opening, neuroinflammation and the neurovascular response
了解 FUS-BBB 打开、神经炎症和神经血管反应之间的关系
- 批准号:
10458700 - 财政年份:2020
- 资助金额:
$ 42.38万 - 项目类别: