Determining how neural activity impairs bioenergetics in PD pathogenesis
确定神经活动如何损害 PD 发病机制中的生物能学
基本信息
- 批准号:9257471
- 负责人:
- 金额:$ 42.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgeAxonBehaviorBioenergeticsBiological AssayBrainCell RespirationCellsCessation of lifeChronicComplexConsumptionCorpus striatum structureDataDefectDependovirusDopamineDoxycyclineFailureFunctional disorderGeneticGlycolysisGoalsImpairmentIn VitroIndividualLeadMeasuresMethodsMidbrain structureMitochondriaMitochondrial ProteinsMusMutationNerve BlockNerve DegenerationNeuronsPINK1 genePTEN-induced putative kinaseParkinson DiseasePathogenesisPharmacogeneticsPlayPresynaptic TerminalsPreventive treatmentProcessProductionRattusResearch PersonnelRespiratory physiologyRoleSubstantia nigra structureSynapsesSynaptic VesiclesTestingToxic effectTranslatingWorkbasecohortdesigndesigner receptors exclusively activated by designer drugsdopaminergic neuronin vivoinnovationinsightkillingsmitochondrial dysfunctionmyelinationnervous system disorderneuron losspostnatalpublic health relevancerelating to nervous systemstressortherapeutic targettoolvesicular release
项目摘要
DESCRIPTION (provided by applicant): Parkinson's disease (PD) is a progressive neurological disorder in which dopamine (DA) neurons in the brain degenerate and die. A genetic form of PD is caused by mutations in the mitochondrial protein PINK1, which proves that DA neurons are selectively vulnerable to specific mitochondrial stressors. Interestingly, considerable evidence suggests that mitochondrial function is also disrupted in sporadic (rather than genetic) forms of PD, and these changes may also selectively kill DA neurons. So, why are DA neurons susceptible to mitochondrial dysfunction? Because a critical role of mitochondria is to produce energy, many researchers believe that DA neurons are susceptible to energy failure. For example, DA neurons may not be able to produce as much energy or they might require more energy than other types of neurons. Indeed, much of the brain's energy is dedicated to supporting neural activity, and the activity of DA neurons may increase in PD. However, although many believe that energy failure plays a central role in PD pathophysiology, we know remarkably little about energy levels in DA neurons; we don't know if energy failure even occurs in these cells. In order to investigate energy failure in DA neurons, we developed innovative assays to measure ATP and visualize mitochondria in individual neurons. With these methods, we can now test our central hypothesis that DA neurons intrinsically require more energy than other types of neurons to sustain their neural activity, making them particularly susceptible to insults that further increase their energy demands or compromise mitochondrial function. The overall objective of the proposed study is to understand if DA neurons have intrinsic differences in the way they produce or consume energy that make them susceptible to energy failure. We will accomplish these objectives in three specific aims. (1) We will determine if DA neurons have intrinsic deficits in mitochondrial bioenergetic function at the synapse. To do this, we will measure energy production and consumption in individual DA neurons with our newly developed assays to evaluate mitochondrial energy levels in individual synaptic boutons. (2) We will determine if and how loss of the PD protein PINK1 compromises bioenergetic function in DA neurons by determining how losing PINK1 affects these neurons' mitochondrial distribution and function. (3) We will determine if the level of neural activity makes DA neurons even more susceptible to energy failure by assessing their function and death after changing activity levels.
Overall, these studies will advance our understanding of if and how energy failure develops in DA neurons, and they will provide insight into how we might therapeutically target energy failure in PD.
描述(由申请人提供):帕金森病(PD)是一种进行性神经系统疾病,其中大脑中的多巴胺(DA)神经元退化并死亡。PD的遗传形式是由线粒体蛋白PINK1的突变引起的,这证明了DA。神经元选择性地容易受到特定线粒体应激源的影响,大量证据表明,在散发性(而不是遗传性)形式的 PD 中,线粒体功能也会受到破坏,并且这些变化也可能选择性地杀死 DA。那么,为什么 DA 神经元容易受到线粒体功能障碍的影响呢?因为线粒体的一个关键作用是产生能量,因此许多研究人员认为 DA 神经元很容易出现能量衰竭,例如,DA 神经元可能无法产生那么多的能量。事实上,大脑的大部分能量都用于支持神经活动,并且 DA 神经元的活动可能会在 PD 中增加。 PD 病理生理学,我们对此知之甚少DA 神经元中的能量水平;我们不知道这些细胞中是否发生能量衰竭,为了研究 DA 神经元中的能量衰竭,我们开发了测量 ATP 并可视化单个神经元中线粒体的创新方法。现在测试我们的中心假设,即 DA 神经元本质上比其他类型的神经元需要更多的能量来维持其神经活动,使它们特别容易受到进一步增加其能量需求或损害线粒体功能的损伤。这项研究的总体目标是了解。如果 DA 神经元在方式上存在内在差异它们产生或消耗能量,使它们容易出现能量衰竭。我们将通过三个具体目标来实现这些目标:(1)我们将确定 DA 神经元的突触线粒体生物能量功能是否存在内在缺陷。使用我们新开发的测定法来评估单个突触 bouton 中的线粒体能量水平,以评估单个 DA 神经元的能量产生和消耗 (2) 我们将通过确定 PD 蛋白 PINK1 的丢失是否以及如何损害 DA 神经元的生物能量功能。失去 PINK1 如何影响这些神经元的线粒体分布和功能 (3) 我们将通过评估神经活动水平改变后的功能和死亡来确定神经活动水平是否使 DA 神经元更容易受到能量衰竭的影响。
总体而言,这些研究将增进我们对 DA 神经元是否以及如何发生能量衰竭的理解,并将为我们如何治疗帕金森病的能量衰竭提供见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEN NAKAMURA其他文献
KEN NAKAMURA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEN NAKAMURA', 18)}}的其他基金
Defining Strategies to Target Energy Failure in Metabolically Vulnerable Human Cells
制定针对代谢脆弱的人体细胞能量衰竭的策略
- 批准号:
10417270 - 财政年份:2020
- 资助金额:
$ 42.27万 - 项目类别:
Defining Strategies to Target Energy Failure in Metabolically Vulnerable Human Cells
制定针对代谢脆弱的人体细胞能量衰竭的策略
- 批准号:
10622496 - 财政年份:2020
- 资助金额:
$ 42.27万 - 项目类别:
Defining Strategies to Target Energy Failure in Metabolically Vulnerable Human Cells
制定针对代谢脆弱的人体细胞能量衰竭的策略
- 批准号:
10237384 - 财政年份:2020
- 资助金额:
$ 42.27万 - 项目类别:
Regulation of mitochondrial morphology by alpha-synuclein
α-突触核蛋白对线粒体形态的调节
- 批准号:
8289649 - 财政年份:2009
- 资助金额:
$ 42.27万 - 项目类别:
Regulation of mitochondrial morphology by alpha-synuclein
α-突触核蛋白对线粒体形态的调节
- 批准号:
8501699 - 财政年份:2009
- 资助金额:
$ 42.27万 - 项目类别:
Regulation of mitochondrial morphology by alpha-synuclein
α-突触核蛋白对线粒体形态的调节
- 批准号:
8231455 - 财政年份:2009
- 资助金额:
$ 42.27万 - 项目类别:
Regulation of mitochondrial morphology by alpha-synuclein
α-突触核蛋白对线粒体形态的调节
- 批准号:
8212953 - 财政年份:2009
- 资助金额:
$ 42.27万 - 项目类别:
Regulation of mitochondrial morphology by alpha-synuclein
α-突触核蛋白对线粒体形态的调节
- 批准号:
7796870 - 财政年份:2009
- 资助金额:
$ 42.27万 - 项目类别:
Regulation of mitochondrial morphology by alpha-synuclein
α-突触核蛋白对线粒体形态的调节
- 批准号:
7659837 - 财政年份:2009
- 资助金额:
$ 42.27万 - 项目类别:
GLUTATHIONE AND DOPAMINERGIC NEURONAL SURVIVAL
谷胱甘肽和多巴胺能神经元的存活
- 批准号:
6185105 - 财政年份:2000
- 资助金额:
$ 42.27万 - 项目类别:
相似国自然基金
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视网膜色素上皮细胞中NAD+水解酶SARM1调控自噬溶酶体途径参与年龄相关性黄斑变性的机制研究
- 批准号:82301214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Causes and Downstream Effects of 14-3-3 Phosphorylation in Synucleinopathies
突触核蛋白病中 14-3-3 磷酸化的原因和下游影响
- 批准号:
10606132 - 财政年份:2024
- 资助金额:
$ 42.27万 - 项目类别:
Cross-modal plasticity after the loss of vision at two early developmental ages in the posterior parietal cortex: Adult connections, cortical function and behavior.
后顶叶皮质两个早期发育年龄视力丧失后的跨模式可塑性:成人连接、皮质功能和行为。
- 批准号:
10751658 - 财政年份:2023
- 资助金额:
$ 42.27万 - 项目类别:
The effect of aging on neurotransmitters and motor performance in a primate model
衰老对灵长类动物模型中神经递质和运动表现的影响
- 批准号:
10573386 - 财政年份:2023
- 资助金额:
$ 42.27万 - 项目类别:
Mechanisms of NMDAR contribution to traumatic injury in retinal ganglion cells
NMDAR对视网膜神经节细胞创伤性损伤的作用机制
- 批准号:
10570666 - 财政年份:2023
- 资助金额:
$ 42.27万 - 项目类别:
The role of oligodendrocyte precursor cells in circuit remodeling in the mature brain
少突胶质细胞前体细胞在成熟脑回路重塑中的作用
- 批准号:
10750508 - 财政年份:2023
- 资助金额:
$ 42.27万 - 项目类别: