EFFECTS OF SLEEP DEPRIVATION ON CIRCADIAN FLUCTUATIONS OF 54,000 BIOMARKERS

睡眠剥夺对 54,000 个生物标志物昼夜节律波动的影响

基本信息

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. The subproject and investigator (PI) may have received primary funding from another NIH source, and thus could be represented in other CRISP entries. The institution listed is for the Center, which is not necessarily the institution for the investigator. In a review of 61 studies with 2,000 depressed (Bipolar Disorder and Major Depression) patients during the past three decades, one night of total sleep deprivation completely reversed the depressive symptoms in roughly 50% of patients (Wu et al. 1990). However, the mechanism of action is unknown and the duration of the antidepressant effects are short-term. Treatment resistant depressed patients are currently being recruited (IRB Protocol # 2001-1616) to undergo sleep deprivation and possible examination of gene expression in lymphocytes. Lymphocytes are a peripheral, renewable, accessible tissue compared to brain yet lymphocytes express a large number of neuronal-related genes (Vawter, M.P., unpublished results). Lymphocyte gene expression is modulated by cytokines, hormones, medications or neurotransmitters released into circulation. Lymphocytes may respond in a circadian manner such as seen in CLOCK gene cycles, and as a surrogate probe for gene expression in the brain (Mill et al. 2002). A convergence of data from microarray studies, quantitative trait locus analysis, and mutagenesis screens demonstrates the pervasiveness of circadian regulation in multiple tissues. The importance of maintaining the internal temporal homeostasis regulated by the cellular circadian system is shown when mutations in genes coding for core components of the clock disrupt homeostatis and can result in disease, including cancer and disturbances to the sleep/wake cycle (Lowrey and Takahashi, 2004). Lymphocyte gene expression profiling has been associated with bipolar disorder (Washizuka et al. 2005), major depression (Rocc et al. 2002), schizophrenia (Nadri et al. 2002, Kipnis et al. 2004), and personality traits (Czermak et al. 2004). Data generated from the current bipolar subjects will be compared to a control group of healthy subjects. A control population, however, has never been examined in a sleep deprivation paradigm for biomarker expression. This protocol involves a 48 hour time course where blood samples from healthy donors will be collected before and during a single night of sleep deprivation. Collection during the first 24 hour period will enable a baseline expression pattern for a normal circadian rhythm to be defined for each individual. The following 24 hour period will demonstrate the effect of sleep deprivation on this expression pattern. Understanding the molecular profile of this response in healthy controls will be fundamental to understanding the efficacy of sleep deprivation treatment in psychiatric disorders. We propose to test a series of hypotheses regarding the gene expression patterns of circulating lymphocytes. We will determine the expression patterns on an Affymetrics GeneChip microarray containing 54,000 sequences using funding from a NIH R21 grant. A subset of these sequences have been shown to be sensitive to phenotypic differences in a case-control comparison involving post-mortem brain (Vawter et al. 2004). Potential biomarkers for other phenotypes or environmental conditions such as sleep deprivation could be discovered using the same approach. The collection of the control subjects is funded by the GCRC CReFF award. First, we hypothesize that a normal circadian pattern will result in control subjects without sleep deprivation. We would expect the overall pattern to be similar to that found in a larger study with healthy individuals containing only one time piont (Whitney et al. 2003). To characterize this pattern over time, samples will be taken for 24 hours before an overnight sleep deprivation session. The diurnal variation seen throughout a 24 hour cycle will determine normal gene expression in circulating lymphocytes without sleep deprivation. Second, we hypothesize that the effect of sleep deprivation on control subjects' gene expression patterns will show shifts in those genes regulating circadian rhythm (e.g. CLOCK, PER, NPAS2 & BMAL1, Bunney et al. 2000). Consistent global changes may also occur and those trends will further help elucidate the mechanism of sleep deprivation. Comparisons will be made for the same subject before and during the sleep deprivation. This design will ensure that differences found can reliably be attributed to the effect of sleep deprivation on the lymphocyte gene expression. Third, we hypothesize that the data collected from the control subjects will be significantly different compared to depressed subjects collected in a similar experiment (IRB Protocol # 2001-1616). The differences can inform as to the potentially novel mechanism that is involved with sleep deprivation and the key to its effectiveness in eliminating the symptoms associated with depression. Only with a control population to use as a reference for the depressed subjects can the mechanism be clarified for these psychiatric disorders. Additionally, a small set of genes (e.g. APOBEC3B, ADSS, ATM, CLC, CTBP1, DATF1, CXCL1 & S100A9, Tsuang et al. 2005) in lymphocytes could be used as a diagnostic tool for psychiatric disorders. Determining the circadian variation inherent within a population will help to isolate the most stable candidate genes for future study. If a robust gene expression difference between populations can be determined, then a more objective diagnostic test could be developed. Fourth, we hypothesize that there will be some overlap in the peripheral lymphocyte gene expression and neural expression derived from post mortem brain samples. Data collected through the Conte center within the department will be compared to the lymphocyte gene expression of the current study. The expression differences found between the brains of depressed and control subjects can be compared to the differences seen in the blood. Stable similarities of these expression differences between central and peripheral systems can be thought of as a biological probe. The use of lymphocytes as a biological probe for neuronal activity has been discussed previously (Gladkevich et al. 2004). Establishing a reliable, cheap peripheral system of detection for differences within the brain may have many potential applications in neuroscience. Fifth, we hypothesize that there will be a difference in biomarker expression between subjects who respond positively to the sleep deprivation and those who do not, according to the psychological surveys. We expect to find no significant difference for the control subjects, but decreased symptomology in roughly 50% of the depressed subjects. Correlating subject's response with the gene expression patterns will define a biomarker expression pattern for the subjects who respond to the sleep deprivation. This pattern may be instrumental in targeting the use of sleep deprivation therapy specifically to those who are likely to respond. If this approach proves an efficient screening tool, then pharmacogentic applications could follow. Understanding the mechanism of sleep deprivation, developing a diagnostic tool and discovering subpopulations likely to respond to a particular treatment is the promise for future implementation of this approach.
该子项目是利用该技术的众多研究子项目之一 资源由 NIH/NCRR 资助的中心拨款提供。子项目及 研究者 (PI) 可能已从 NIH 的另一个来源获得主要资金, 因此可以在其他 CRISP 条目中表示。列出的机构是 对于中心来说,它不一定是研究者的机构。 在对过去三十年对 2,000 名抑郁症(双相情感障碍和重度抑郁症)患者进行的 61 项研究的回顾中,一晚完全睡眠剥夺完全逆转了大约 50% 患者的抑郁症状(Wu 等人,1990)。 然而,其作用机制尚不清楚,并且抗抑郁作用的持续时间是短期的。目前正在招募对治疗有抵抗力的抑郁症患者(IRB Protocol # 2001-1616)以进行睡眠剥夺并可能检查淋巴细胞中的基因表达。 与大脑相比,淋巴细胞是一种外周、可再生、可接近的组织,但淋巴细胞表达大量神经元相关基因(Vawter,M.P.,未发表的结果)。 淋巴细胞基因表达受到释放到循环中的细胞因子、激素、药物或神经递质的调节。 淋巴细胞可能以昼夜节律方式做出反应,如 CLOCK 基因周期中所见,并作为大脑中基因表达的替代探针(Mill 等人,2002)。 来自微阵列研究、数量性状基因座分析和诱变筛选的数据的汇集证明了昼夜节律调节在多种组织中的普遍性。 当编码时钟核心成分的基因突变破坏体内平衡​​并可能导致疾病(包括癌症和睡眠/觉醒周期紊乱)时,就显示了维持细胞昼夜节律系统调节的内部时间稳态的重要性(Lowrey 和 Takahashi, 2004)。 淋巴细胞基因表达谱与双相情感障碍 (Washizuka et al. 2005)、重度抑郁症 (Rocc et al. 2002)、精神分裂症 (Nadri et al. 2002、Kipnis et al. 2004) 和人格特质 (Czermak et al. 2004) 相关。 2004)。 当前双相情感障碍受试者生成的数据将与健康受试者对照组进行比较。 然而,从未在睡眠剥夺范例中检查对照人群的生物标志物表达。 该方案涉及 48 小时的时间过程,在睡眠不足的一晚之前和期间收集健康捐献者的血液样本。 第一个 24 小时内的收集将为每个人定义正常昼夜节律的基线表达模式。 接下来的 24 小时将展示睡眠剥夺对这种表达模式的影响。 了解健康对照者这种反应的分子特征对于了解睡眠剥夺治疗精神疾病的疗效至关重要。 我们建议测试一系列关于循环淋巴细胞基因表达模式的假设。 我们将利用 NIH R21 资助确定包含 54,000 个序列的 Affymetrics GeneChip 微阵列上的表达模式。 在涉及死后大脑的病例对照比较中,这些序列的一个子集已被证明对表型差异敏感(Vawter 等,2004)。 使用相同的方法可以发现其他表型或环境条件(例如睡眠剥夺)的潜在生物标志物。对照对象的收集由 GCRC CReFF 奖资助。 首先,我们假设正常的昼夜节律模式将导致对照组受试者不被剥夺睡眠。 我们预计总体模式与在一项针对仅包含一次点的健康个体的大型研究中发现的结果类似(Whitney 等人,2003 年)。为了描述这种随时间变化的模式,我们将在夜间睡眠剥夺之前 24 小时内采集样本。 在 24 小时周期中观察到的昼夜变化将决定在不剥夺睡眠的情况下循环淋巴细胞中的正常基因表达。 其次,我们假设睡眠剥夺对对照受试者基因表达模式的影响将显示调节昼夜节律的基因的变化(例如 CLOCK、PER、NPAS2 和 BMAL1,Bunney 等人,2000)。 全球也可能发生一致的变化,这些趋势将进一步有助于阐明睡眠不足的机制。 将对同一受试者在睡眠剥夺之前和期间进行比较。这种设计将确保所发现的差异可以可靠地归因于睡眠剥夺对淋巴细胞基因表达的影响。 第三,我们假设从对照受试者收集的数据与在类似实验中收集的抑郁受试者数据将显着不同(IRB Protocol # 2001-1616)。 这些差异可以揭示与睡眠剥夺有关的潜在新机制及其有效消除抑郁相关症状的关键。 只有以对照人群作为抑郁症受试者的参考,才能阐明这些精神疾病的机制。此外,淋巴细胞中的一小部分基因(例如 APOBEC3B、ADSS、ATM、CLC、CTBP1、DATF1、CXCL1 和 S100A9,Tsuang 等人,2005)可用作精神疾病的诊断工具。 确定人群中固有的昼夜节律变化将有助于分离出最稳定的候选基因以供未来研究。 如果可以确定人群之间强大的基因表达差异,则可以开发更客观的诊断测试。 第四,我们假设来自死后脑样本的外周淋巴细胞基因表达和神经表达会有一些重叠。 通过该部门内的 Conte 中心收集的数据将与当前研究的淋巴细胞基因表达进行比较。 抑郁症受试者和对照组大脑之间的表达差异可以与血液中的差异进行比较。 中枢和外周系统之间的这些表达差异的稳定相似性可以被认为是生物探针。 先前已经讨论过使用淋巴细胞作为神经元活动的生物探针(Gladkevich 等人,2004)。 建立可靠、廉价的检测大脑内部差异的外围系统可能在神经科学中有许多潜在的应用。 第五,根据心理学调查,我们假设对睡眠剥夺做出积极反应的受试者和没有做出反应的受试者之间的生物标志物表达存在差异。 我们预计对照受试者没有显着差异,但大约 50% 的抑郁受试者的症状有所减轻。 将受试者的反应与基因表达模式相关联将为对睡眠剥夺做出反应的受试者定义生物标志物表达模式。这种模式可能有助于针对那些可能有反应的人专门使用睡眠剥夺疗法。 如果这种方法被证明是一种有效的筛选工具,那么药物遗传学应用就会随之而来。 了解睡眠剥夺的机制、开发诊断工具并发现可能对特定治疗产生反应的亚群是未来实施该方法的希望。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARQUIS PHILIP VAWTER其他文献

MARQUIS PHILIP VAWTER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARQUIS PHILIP VAWTER', 18)}}的其他基金

Mitochondrial Deletions in Mood Disorders
情绪障碍中的线粒体缺失
  • 批准号:
    8605235
  • 财政年份:
    2013
  • 资助金额:
    $ 0.47万
  • 项目类别:
Mitochondrial Deletions in Mood Disorders
情绪障碍中的线粒体缺失
  • 批准号:
    8427028
  • 财政年份:
    2013
  • 资助金额:
    $ 0.47万
  • 项目类别:
Mitochondrial Abnormalities in Schizophrenia and Bipolar Disorder
精神分裂症和双相情感障碍的线粒体异常
  • 批准号:
    7877015
  • 财政年份:
    2009
  • 资助金额:
    $ 0.47万
  • 项目类别:
Mitochondrial Abnormalities in Schizophrenia and Bipolar Disorder
精神分裂症和双相情感障碍的线粒体异常
  • 批准号:
    8444608
  • 财政年份:
    2009
  • 资助金额:
    $ 0.47万
  • 项目类别:
Mitochondrial Abnormalities in Schizophrenia and Bipolar Disorder
精神分裂症和双相情感障碍的线粒体异常
  • 批准号:
    7633808
  • 财政年份:
    2009
  • 资助金额:
    $ 0.47万
  • 项目类别:
Mitochondrial Dysfunction In Schizophrenia
精神分裂症的线粒体功能障碍
  • 批准号:
    9030483
  • 财政年份:
    2009
  • 资助金额:
    $ 0.47万
  • 项目类别:
Mitochondrial Abnormalities in Schizophrenia and Bipolar Disorder
精神分裂症和双相情感障碍的线粒体异常
  • 批准号:
    8053756
  • 财政年份:
    2009
  • 资助金额:
    $ 0.47万
  • 项目类别:
Mitochondrial Abnormalities in Schizophrenia and Bipolar Disorder
精神分裂症和双相情感障碍的线粒体异常
  • 批准号:
    8241152
  • 财政年份:
    2009
  • 资助金额:
    $ 0.47万
  • 项目类别:
Mitochondrial Dysfunction In Schizophrenia
精神分裂症的线粒体功能障碍
  • 批准号:
    9030483
  • 财政年份:
    2009
  • 资助金额:
    $ 0.47万
  • 项目类别:
Biomarker Genes in Mood Disorder: Lymphocyte and Brain
情绪障碍的生物标志基因:淋巴细胞和大脑
  • 批准号:
    7089915
  • 财政年份:
    2005
  • 资助金额:
    $ 0.47万
  • 项目类别:

相似国自然基金

草原生态补奖政策对牧户兼业行为的影响机理研究——以内蒙古为例
  • 批准号:
    72363025
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
生态补奖背景下草原牧户实现自主性减畜的机制、路径和政策研究
  • 批准号:
    72374130
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
草原生态补奖政策激励-约束下牧民生产行为决策机制及生态效应
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    50 万元
  • 项目类别:
华罗庚数学奖获得者座谈会及数学普及活动
  • 批准号:
    11926407
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Neuroimaging Studies of Reward Processing in Depression
抑郁症奖励处理的神经影像学研究
  • 批准号:
    10674674
  • 财政年份:
    2022
  • 资助金额:
    $ 0.47万
  • 项目类别:
A Model of Antibiotic-induced Gut Dysbiosis and Depressive Symptomatology
抗生素引起的肠道菌群失调和抑郁症状模型
  • 批准号:
    10592403
  • 财政年份:
    2022
  • 资助金额:
    $ 0.47万
  • 项目类别:
Neuroimaging Studies of Reward Processing in Depression
抑郁症奖励处理的神经影像学研究
  • 批准号:
    10307643
  • 财政年份:
    2022
  • 资助金额:
    $ 0.47万
  • 项目类别:
Dissecting the Contribution of the Ventral Hippocampus to (R,S)-Ketamine's Fear Buffering Effects
剖析腹侧海马对 (R,S)-氯胺酮恐惧缓冲效应的贡献
  • 批准号:
    10319316
  • 财政年份:
    2021
  • 资助金额:
    $ 0.47万
  • 项目类别:
Neurophysiological reward responsiveness, stress, and depressive symptoms across the perinatal period
整个围产期的神经生理奖赏反应、压力和抑郁症状
  • 批准号:
    10469986
  • 财政年份:
    2021
  • 资助金额:
    $ 0.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了