NUMERICAL SIMULATIONS TO STUDY THE ROLE OF BIOMECHANICS IN TACTILE SENSATION
研究生物力学在触觉中的作用的数值模拟
基本信息
- 批准号:8364342
- 负责人:
- 金额:$ 0.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnimal ModelAuditoryBiomechanicsBiomedical ResearchCaenorhabditis elegansCodeCutaneousDataElementsEsthesiaFingersFundingGoalsGrantHigh Performance ComputingHumanInvestigationJournalsLiteratureLocationMechanical StimulationMechanicsMechanoreceptorsMethodsModelingMonkeysNational Center for Research ResourcesNatureNematodaNerveNeuronsNeurosciencesPlayPrimatesPrincipal InvestigatorPropertyResearchResearch InfrastructureResearch PersonnelResourcesRoleSeriesShapesSignal TransductionSimulateSkinSkin TissueSourceStimulusStressStructureSubcutaneous TissueSupercomputingSurfaceSystemTactileTissuesTouch sensationUnited States National Institutes of HealthVisualWorkabstractingbasebiomechanical engineeringcostenergy densityepithelial Na+ channelfollow-upinformation processingnanoneurophysiologyreceptorrelating to nervous systemresearch studyresponsesimulationsomatosensorysymposiumtwo-dimensional
项目摘要
This subproject is one of many research subprojects utilizing the resources
provided by a Center grant funded by NIH/NCRR. Primary support for the subproject
and the subproject's principal investigator may have been provided by other sources,
including other NIH sources. The Total Cost listed for the subproject likely
represents the estimated amount of Center infrastructure utilized by the subproject,
not direct funding provided by the NCRR grant to the subproject or subproject staff.
Numerical Simulations to Study the Role of Biomechanics in Tactile sensation PI: Dr. Mandayam A. Srinivasan, Director, MIT Touch Lab Abstract The biomechanics of skin tissues play a major role in the human tactile mechanisms. When our fingers come in contact with an object, surface loads imposed on the finger pad are transmitted to embedded nerve terminals (mechanoreceptors) in the skin tissues. These mechanoreceptors generate neural codes of the mechanical signals, enabling us to feel the object. Unlike visual and auditory mechanisms, modeling tactile encoding mechanisms has been a challenge and is as yet an unsolved problem. To better understand the mechanics of contact between the skin and an object, it is imperative to have a good understanding of the mechanical properties of the underlying tissues. To gauge the role of skin biomechanics in tactile response, two dimensional (Srinivasan and Dandekar, 1996; Maeno et al, 1998) and three dimensional finite element (FE) models (Dandekar, Raju and Srinivasan, 2003) of the human and monkey fingertips with realistic external geometry and internal layered structure of the skin and subcutaneous tissues have been developed using linear elastic models of the underlying tissue. These models enabled researchers to estimate the stress state at mechanoreceptor locations and relate it to the mechanoreceptor neural response. Dandekar et al. (2003) hypothesized that the strain energy density at a mechanoreceptor location is a good candidate to be the relevant stimulus for SA-I mechanoreceptors. The 3D finite element simulations for this study were conducted using the resources at the NSF Pittsburgh supercomputing Center. The present study is a follow up to the work done by Dandekar et al. (2003) which was based on purely elastic material models. The goal of present study is to develop viscoelastic finite element models (using ADINA) of the primate finger capable of predicting rate dependent mechanoreceptor responses to dynamic loading. In addition to this we will utilize similar methods to study the biomechanics of a new model organism, the nematode, C.elegans. We have recently completed experiments to characterize the viscoelastic properties of primate fingertip and elastic properties of C. elegans tissue through micro and nano mechanical stimulation. In addition, we have data on the surface deflection of primate fingertips to line loads (Srinivasan, 1989). The present work will be focused at developing realistic finite element models for the primate finger and the worm, calibrating these models by simulating the indentation experiments in ADINA and matching the model response with available experimental data (line load surface deflection data (Srinivasan, 1989) as well as force response from our indentation experiments). These calibrated models will then be used to predict biomechanical and neurophysiological response of mechanoreceptors and match with data already present in literature (Srinivasan and Lamotte, 1991 and OHagan et al, 2004). References Dandekar, K., B.I. Raju and M.A. Srinivasan, (2003). "3-D Finite-Element Models of Human and Monkey Fingertips to Investigate the Mechanics of Tactile Sense." Journal of Biomechanical Engineering, Vol. 125, pp. 682-691, ASME Press. Maeno, T., Kobayashi, K., and Yamazaki, N., (1998), Relationship Between the Structure of Human Finger Tissue and the Location of Tactile Receptors, JSME Int. J., 41, pp. 94100. Srinivasan, M.A., (1989). Surface deflection of primate fingertip under line load. Journal of Biomechanics 22, 343349. Srinivasan, M. A. and K. Dandekar (1996). "An investigation of the mechanics of tactile sense using two dimensional models of the primate fingertip." Journal of Biomechanical Engineering 118: 48-55. Srinivasan, M. A. and R. H. LaMotte (1991). Encoding of shape in the responses of cutaneous mechanoreceptors. Information Processing in the Somatosensory System. Wenner-Gren Intl. Symposium Series. O. Franzen and J. Westman, Macmillan Press. O'Hagan R, Chalfie M, Goodman MB, (2005). "The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals". Nature Neuroscience; 8 (1): 43-50
该副本是利用资源的众多研究子项目之一
由NIH/NCRR资助的中心赠款提供。对该子弹的主要支持
而且,副投影的主要研究员可能是其他来源提供的
包括其他NIH来源。 列出的总费用可能
代表subproject使用的中心基础架构的估计量,
NCRR赠款不直接向子弹或副本人员提供的直接资金。
数值模拟研究生物力学在触觉感觉中的作用PI:MANDAYAM A. SRINIVASAN博士,MIT Touch Lab摘要摘要皮肤组织的生物力学在人体触觉机制中起着重要作用。当我们的手指与物体接触时,施加在手指垫上的表面负荷会传播到皮肤组织中的嵌入神经末端(机械感受器)。这些机械感受器生成机械信号的神经代码,使我们能够感觉到对象。与视觉和听觉机制不同,建模触觉编码机制是一个挑战,尚未解决。为了更好地了解皮肤与物体之间接触的机制,必须对基础组织的力学特性有充分的了解。为了评估皮肤生物力学在触觉响应中的作用,二维(Srinivasan和Dandekar,1996; Maeno等,1998)和人类和猴子指尖的三维有限元(Fe)模型(Fe)有限元(FE)模型(Dandekar,Raju,Raju和Srinivasan,2003)使用了逼真的外部几何形状和皮肤和皮下组织的内部分层结构,已经使用了基础组织的线性弹性模型。这些模型使研究人员能够估算机械感受器位置的应力状态,并将其与机械感受器神经反应相关联。 Dandekar等。 (2003年)假设,机械感受器位置的应变能密度是SA-I机械感受器的相关刺激的好候选者。本研究的3D有限元模拟是使用NSF匹兹堡超级计算中心的资源进行的。本研究是Dandekar等人所做的工作的后续。 (2003)基于纯弹性材料模型。本研究的目的是开发灵长类手指的粘弹性有限元模型(使用ADINA),能够预测依赖速率的机械感受器对动态载荷的响应。除此之外,我们还将利用类似的方法来研究新型模型生物体的生物力学,即线虫C.Elegans。我们最近完成了实验,以表征秀丽隐杆线虫组织的灵长类动物指尖和弹性特性通过微型和纳米机械刺激的弹性特性。此外,我们还有有关灵长类指尖向线负荷的表面偏转的数据(Srinivasan,1989)。目前的工作将集中于为灵长类动物手指和蠕虫开发逼真的有限元模型,通过模拟Adina中的压痕实验来校准这些模型,并将模型响应与可用的实验数据匹配(线负载表面偏转数据(Srinivasan,1989)以及我们的压痕实验的力响应)。然后,这些校准模型将用于预测机械感受器的生物力学和神经生理反应,并与文献中已经存在的数据匹配(Srinivasan和Lamotte,1991和Ohagan等,2004)。参考文献Dandekar,K.,B.I。 Raju和M.A. Srinivasan,(2003年)。 “人类和猴子指尖的3-D有限元模型研究触觉感的机制。”生物力学工程杂志,第1卷。 125,第682-691页,ASME出版社。 T. J.,41,第94100页。Srinivasan,M.A。,(1989)。线载荷下灵长类动物指尖的表面挠度。生物力学杂志22,343349。Srinivasan,M。A.和K. Dandekar(1996)。 “使用灵长类动物指尖的二维模型对触觉感的机制进行了研究。”生物力学工程杂志118:48-55。 Srinivasan,M。A.和R. H. Lamotte(1991)。皮肤机械感受器响应中形状的编码。体感系统中的信息处理。 Wenner-Gren Intl。研讨会系列。 O. Franzen和J. Westman,Macmillan出版社。 O'Hagan R,Chalfie M,Goodman MB(2005)。 “秀丽隐杆线虫触摸受体神经元的MEC-4度/ENAC通道会传递机械信号”。自然神经科学; 8(1):43-50
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MANDAYAM A SRINIVASAN其他文献
MANDAYAM A SRINIVASAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MANDAYAM A SRINIVASAN', 18)}}的其他基金
Haptic Virtual Environments to Enhance Navigation and Mobility of Blind People
触觉虚拟环境可增强盲人的导航和移动性
- 批准号:
8728243 - 财政年份:2010
- 资助金额:
$ 0.11万 - 项目类别:
Haptic Virtual Environments to Enhance Navigation and Mobility of Blind People
触觉虚拟环境可增强盲人的导航和移动性
- 批准号:
7986453 - 财政年份:2010
- 资助金额:
$ 0.11万 - 项目类别:
Haptic Virtual Environments to Enhance Navigation and Mobility of Blind People
触觉虚拟环境可增强盲人的导航和移动性
- 批准号:
8323490 - 财政年份:2010
- 资助金额:
$ 0.11万 - 项目类别:
Haptic Virtual Environments to Enhance Navigation and Mobility of Blind People
触觉虚拟环境可增强盲人的导航和移动性
- 批准号:
8547812 - 财政年份:2010
- 资助金额:
$ 0.11万 - 项目类别:
Haptic Virtual Environments to Enhance Navigation and Mobility of Blind People
触觉虚拟环境可增强盲人的导航和移动性
- 批准号:
8133826 - 财政年份:2010
- 资助金额:
$ 0.11万 - 项目类别:
Hands-On Virtual Reality Technology for Clinical Education and Training
用于临床教育和培训的实践虚拟现实技术
- 批准号:
8004524 - 财政年份:2008
- 资助金额:
$ 0.11万 - 项目类别:
Hands-On Virtual Reality Technology for Clinical Education and Training
用于临床教育和培训的实践虚拟现实技术
- 批准号:
7404633 - 财政年份:2008
- 资助金额:
$ 0.11万 - 项目类别:
Hands-On Virtual Reality Technology for Clinical Education and Training
用于临床教育和培训的实践虚拟现实技术
- 批准号:
8138336 - 财政年份:2008
- 资助金额:
$ 0.11万 - 项目类别:
相似国自然基金
自闭症动物模型听觉皮层声调谐异常及其机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
脑型钠通道在水杨酸钠耳鸣模型听皮层异常兴奋中的作用及机制研究
- 批准号:81900930
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
mTOR信号通路在耳蜗毛细胞发育和存活中的调控作用及其机制研究
- 批准号:81900937
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
利用基因敲除小鼠研究CDK5在毛细胞发育及听觉中的功能
- 批准号:81771001
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
利用听力缺陷荣昌猪研究Mitf基因在听觉发育与形成中的作用
- 批准号:31771376
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Consequences of Perinatal Nicotine Exposure on Functional Brainstem Development
围产期尼古丁暴露对功能性脑干发育的影响
- 批准号:
10752337 - 财政年份:2023
- 资助金额:
$ 0.11万 - 项目类别:
Determinants of age-induced hearing loss and reversal strategies
年龄引起的听力损失的决定因素和逆转策略
- 批准号:
10496280 - 财政年份:2023
- 资助金额:
$ 0.11万 - 项目类别:
Establishing the pig as a large animal model for studying drug delivery to the inner ear
建立猪作为研究内耳药物输送的大型动物模型
- 批准号:
10705773 - 财政年份:2022
- 资助金额:
$ 0.11万 - 项目类别:
Establishing the pig as a large animal model for studying drug delivery to the inner ear
建立猪作为研究内耳药物输送的大型动物模型
- 批准号:
10577268 - 财政年份:2022
- 资助金额:
$ 0.11万 - 项目类别: